Sparse Non-Gaussian Component Analysis

被引:5
|
作者
Diederichs, Elmar [1 ]
Juditsky, Anatoli [2 ]
Spokoiny, Vladimir [3 ,4 ]
Schuette, Christof [1 ]
机构
[1] Free Univ Berlin, Inst Math & Informat, D-14195 Berlin, Germany
[2] Univ Grenoble 1, LJK, Grenoble 9, France
[3] Weierstrass Inst, D-10117 Berlin, Germany
[4] Humboldt Univ, D-10117 Berlin, Germany
关键词
Convex projection; model reduction; principle component analysis (PCA); reduction of dimensionality; sparsity; structural adaptation; variable selection; REDUCTION;
D O I
10.1109/TIT.2010.2046229
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Non-Gaussian component analysis (NGCA) introduced in [24] offered a method for high-dimensional data analysis allowing for identifying a low-dimensional non-Gaussian component of the whole distribution in an iterative and structure adaptive way. An important step of the NGCA procedure is identification of the non-Gaussian subspace using principle component analysis (PCA) method. This article proposes a new approach to NGCA called sparse NGCA which replaces the PCA-based procedure with a new the algorithm we refer to as convex projection.
引用
收藏
页码:3033 / 3047
页数:15
相关论文
共 50 条
  • [1] Non-Gaussian Component Analysis using Entropy Methods
    Goyal, Navin
    Shetty, Abhishek
    [J]. PROCEEDINGS OF THE 51ST ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '19), 2019, : 840 - 851
  • [2] Optimization and testing in linear non-Gaussian component analysis
    Jin, Ze
    Risk, Benjamin B.
    Matteson, David S.
    [J]. STATISTICAL ANALYSIS AND DATA MINING, 2019, 12 (03) : 141 - 156
  • [3] Compressed Principal Component Analysis of Non-Gaussian Vectors
    Mignolet, Marc
    Soize, Christian
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2020, 8 (04): : 1261 - 1286
  • [4] Sparse non Gaussian component analysis by semidefinite programming
    Elmar Diederichs
    Anatoli Juditsky
    Arkadi Nemirovski
    Vladimir Spokoiny
    [J]. Machine Learning, 2013, 91 : 211 - 238
  • [5] Sparse non Gaussian component analysis by semidefinite programming
    Diederichs, Elmar
    Juditsky, Anatoli
    Nemirovski, Arkadi
    Spokoiny, Vladimir
    [J]. MACHINE LEARNING, 2013, 91 (02) : 211 - 238
  • [6] Group linear non-Gaussian component analysis with applications to neuroimaging
    Zhao, Yuxuan
    Matteson, David S.
    Mostofsky, Stewart H.
    Nebel, Mary Beth
    Risk, Benjamin B.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 171
  • [7] Linear Non-Gaussian Component Analysis Via Maximum Likelihood
    Risk, Benjamin B.
    Matteson, David S.
    Ruppert, David
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2019, 114 (525) : 332 - 343
  • [8] Sparse Bayesian Learning for non-Gaussian sources
    Porter, Richard
    Tadic, Vladislav
    Achim, Achim
    [J]. DIGITAL SIGNAL PROCESSING, 2015, 45 : 2 - 12
  • [9] Functional principal component analysis estimator for non-Gaussian data
    Zhong, Rou
    Liu, Shishi
    Li, Haocheng
    Zhang, Jingxiao
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2022, 92 (13) : 2788 - 2801
  • [10] Gaussian and non-Gaussian Double Subspace Statistical Process Monitoring Based on Principal Component Analysis and Independent Component Analysis
    Huang, Jian
    Yan, Xuefeng
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2015, 54 (03) : 1015 - 1027