Metabolic Engineering Strategies for Improved Lipid Production and Cellular Physiological Responses in Yeast Saccharomyces cerevisiae

被引:13
|
作者
Jiang, Wei [1 ,2 ]
Li, Chao [3 ]
Li, Yanjun [4 ,5 ]
Peng, Huadong [1 ,2 ]
机构
[1] Monash Univ, Dept Chem & Biol Engn, Clayton, Vic 3800, Australia
[2] Tech Univ Denmark, Novo Nordisk Fdn Ctr Biosustainabil, DK-2800 Lyngby, Denmark
[3] East China Univ Sci & Technol, State Key Lab Bioreactor Engn, Shanghai 200234, Peoples R China
[4] Tianjin Univ Sci & Technol, Coll Biotechnol, Tianjin 300457, Peoples R China
[5] Tianjin Univ Sci & Technol, Key Lab Ind Fermentat Microbiol, Minist Educ, Tianjin 300457, Peoples R China
关键词
metabolic engineering; synthetic biology; yeast; triacylglycerol; cellular physiology; fatty acid; MULTIPARAMETER FLOW-CYTOMETRY; FATTY-ACID BIOSYNTHESIS; BETA-OXIDATION CYCLE; YARROWIA-LIPOLYTICA; TRIACYLGLYCEROL ACCUMULATION; OLEAGINOUS YEAST; RICINOLEIC ACID; DIACYLGLYCEROL ACYLTRANSFERASE; MEMBRANE-FLUIDITY; ESCHERICHIA-COLI;
D O I
10.3390/jof8050427
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Microbial lipids have been a hot topic in the field of metabolic engineering and synthetic biology due to their increased market and important applications in biofuels, oleochemicals, cosmetics, etc. This review first compares the popular hosts for lipid production and explains the four modules for lipid synthesis in yeast, including the fatty acid biosynthesis module, lipid accumulation module, lipid sequestration module, and fatty acid modification module. This is followed by a summary of metabolic engineering strategies that could be used for enhancing each module for lipid production. In addition, the efforts being invested in improving the production of value-added fatty acids in engineered yeast, such as cyclopropane fatty acid, ricinoleic acid, gamma linoleic acid, EPA, and DHA, are included. A discussion is further made on the potential relationships between lipid pathway engineering and consequential changes in cellular physiological properties, such as cell membrane integrity, intracellular reactive oxygen species level, and mitochondrial membrane potential. Finally, with the rapid development of synthetic biology tools, such as CRISPR genome editing tools and machine learning models, this review proposes some future trends that could be employed to engineer yeast with enhanced intracellular lipid production while not compromising much of its cellular health.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Ethylene production by metabolic engineering of the yeast Saccharomyces cerevisiae
    Pirkov, I.
    Albers, E.
    Norbeck, J.
    Larsson, C.
    METABOLIC ENGINEERING, 2008, 10 (05) : 276 - 280
  • [2] Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals
    Borodina, Irina
    Nielsen, Jens
    BIOTECHNOLOGY JOURNAL, 2014, 9 (05) : 609 - 620
  • [3] Metabolic pathway engineering of yeast Saccharomyces cerevisiae for isobutanol production
    Ishii, Jun
    Matsuda, Fumio
    Kondo, Akihiko
    YEAST, 2013, 30 : 210 - 210
  • [4] Metabolic engineering of lipid pathways in Saccharomyces cerevisiae and staged bioprocess for enhanced lipid production and cellular physiology
    Peng, Huadong
    He, Lizhong
    Haritos, Victoria S.
    JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2018, 45 (08) : 707 - 717
  • [5] Metabolic engineering of Saccharomyces cerevisiae for production of novel lipid compounds
    Dyer, JM
    Chapital, DC
    Kuan, JW
    Mullen, RT
    Pepperman, AB
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2002, 59 (2-3) : 224 - 230
  • [6] Metabolic engineering of Saccharomyces cerevisiae for production of novel lipid compounds
    J. Dyer
    D. Chapital
    J. Kuan
    R. Mullen
    A. Pepperman
    Applied Microbiology and Biotechnology, 2002, 59 : 224 - 230
  • [7] Cellular and molecular engineering of yeast Saccharomyces cerevisiae for advanced biobutanol production
    Kuroda, Kouichi
    Ueda, Mitsuyoshi
    FEMS MICROBIOLOGY LETTERS, 2016, 363 (03)
  • [8] : Metabolic engineering of the yeast Saccharomyces cerevisiae toward increase of glycerol production
    Murashchenko, Lidiia R.
    Dmytruk, Kostyantyn
    Sibirny, Andriy A.
    YEAST, 2015, 32 : S162 - S162
  • [9] Metabolic engineering strategies for improvement of ethanol production in cellulolytic Saccharomyces cerevisiae
    Song, Xiaofei
    Li, Yuanzi
    Wu, Yuzhen
    Cai, Miao
    Liu, Quanli
    Gao, Kai
    Zhang, Xiuming
    Bai, Yanling
    Xu, Haijin
    Qiao, Mingqiang
    FEMS YEAST RESEARCH, 2018, 18 (08)
  • [10] Production of lipid compounds in the yeast Saccharomyces cerevisiae
    M. Veen
    C. Lang
    Applied Microbiology and Biotechnology, 2004, 63 : 635 - 646