Existence of Global Attractors in Lp for m-Laplacian Parabolic Equation in RN

被引:0
|
作者
Chen, Caisheng [1 ]
Shi, Lanfang [1 ,2 ]
Wang, Hui [1 ,3 ]
机构
[1] Hohai Univ, Dept Math, Nanjing 210098, Jiangsu, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Coll Math & Phys, Nanjing 210044, Jiangsu, Peoples R China
[3] Ili Normal Univ, Dept Math, Yining 835000, Xinjiang, Peoples R China
来源
关键词
UNBOUNDED DOMAIN;
D O I
10.1155/2009/563767
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the long-time behavior of solution for the m-Laplacian equation u(t) - div(vertical bar del(u)vertical bar(m-2)del u) + lambda vertical bar u vertical bar(m-2) u + f(x, u) = g(x) in R-N x R+, in which the nonlinear term f (x, u) is a function like f (x, u) = -h(x)vertical bar u vertical bar(q-2) u with h(x) >= 0, 2 <= q < m, or f(x, u) = a(x)vertical bar u vertical bar(alpha-2) u - h(x)vertical bar u vertical bar(beta-2)u with a(x) >= h(x) >= 0 and a > beta >= m. We prove the existence of a global (L-2(R-N), L-p(R-N))-attractor for any p > m. Copyright (C) 2009 Caisheng Chen et al.
引用
收藏
页数:17
相关论文
共 50 条