Artificial neural networks and risk stratification: A promising combination

被引:6
|
作者
De Beule, M. [1 ]
Maes, E.
De Winter, O.
Vanlaere, W.
Van Impe, R.
机构
[1] Univ Ghent, Fac Engn, Dept Struct Engn, B-9052 Zwijnaarde, Belgium
[2] Univ Ghent, Fac Med & Hlth Sci, Dept Radiotherapy & Nucl Med, B-9000 Ghent, Belgium
关键词
neural networks; diagnosis; cardiology; Framingham; D'Agostino;
D O I
10.1016/j.mcm.2006.12.024
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A brief overview of the principles of Artificial Neural Networks (ANN's) is presented, followed by a review of the state of the art for ANN's in the application field of the diagnosis of cardiovascular diseases. Next the technique of ANN's is applied to model the risk stratification according to D'Agostino et al. [R.B. D'Agostino, M.W. Russell, D.M. Huse, et al., Primary and subsequent coronary risk appraisal: New results from the Framingham study, American Heart Journal 139 (2000) 272-281]. The performance of the network proves its ability to find non-linear relationships in (medical) data and some important factors in accomplishing an accurate and reliable network are derived. At the end an ANN is designed to investigate the predictive quality of certain well chosen risk factors for secondary prevention. The performance of the resulting network is put in an appropriate perspective and some aspects that need further study are mentioned. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:88 / 94
页数:7
相关论文
共 50 条
  • [1] Artificial neural networks and risk stratification in emergency departments
    Falavigna, Greta
    Costantino, Giorgio
    Furlan, Raffaello
    Quinn, James V.
    Ungar, Andrea
    Ippoliti, Roberto
    [J]. INTERNAL AND EMERGENCY MEDICINE, 2019, 14 (02) : 291 - 299
  • [2] Artificial neural networks and risk stratification in emergency departments
    Greta Falavigna
    Giorgio Costantino
    Raffaello Furlan
    James V. Quinn
    Andrea Ungar
    Roberto Ippoliti
    [J]. Internal and Emergency Medicine, 2019, 14 : 291 - 299
  • [3] Risk stratification in heart failure using artificial neural networks
    Atienza, F
    Martinez-Alzamora, N
    De Velasco, JA
    Dreiseitl, S
    Ohno-Machado, L
    [J]. JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2000, : 32 - 36
  • [4] Forecast Combination by Using Artificial Neural Networks
    Aladag, Cagdas Hakan
    Egrioglu, Erol
    Yolcu, Ufuk
    [J]. NEURAL PROCESSING LETTERS, 2010, 32 (03) : 269 - 276
  • [5] Forecast Combination by Using Artificial Neural Networks
    Cagdas Hakan Aladag
    Erol Egrioglu
    Ufuk Yolcu
    [J]. Neural Processing Letters, 2010, 32 : 269 - 276
  • [6] Artificial Neural Networks and risk stratification models in Emergency Departments: The policy maker's perspective
    Casagranda, Ivo
    Costantino, Giorgio
    Falavigna, Greta
    Furlan, Raffaello
    Ippoliti, Roberto
    [J]. HEALTH POLICY, 2016, 120 (01) : 111 - 119
  • [7] Artificial neural networks versus bayesian classifiers for risk stratification following uncomplicated myocardial infarction
    Bigi, R
    Desideri, A
    Chiarotto, FA
    Toffolo, GM
    Gregori, D
    Cortigiani, L
    Coscarelli, S
    Celegon, L
    [J]. EUROPEAN HEART JOURNAL, 2002, 23 : 117 - 117
  • [8] Artificial neural networks and robust Bayesian classifiers for risk stratification following uncomplicated myocardial infarction
    Bigi, R
    Gregori, D
    Cortigiani, L
    Desideri, A
    Chiarotto, FA
    Toffolo, GM
    [J]. INTERNATIONAL JOURNAL OF CARDIOLOGY, 2005, 101 (03) : 481 - 487
  • [9] Deep Neural Networks for Radiographic Risk Stratification of Gliomas
    Gao, S.
    Kann, B. H.
    Bindra, R. S.
    Contessa, J. N.
    Yu, J. B.
    Aneja, S.
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2019, 105 (01): : S121 - S121
  • [10] Risk Stratification of Malignant Melanoma Using Neural Networks
    Burghoff, Julian
    Ackermann, Leonhard
    Salahdine, Younes
    Bram, Veronika
    Wunderlich, Katharina
    Balkenhol, Julius
    Dirschka, Thomas
    Gottschalk, Hanno
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT IV, 2023, 14257 : 153 - 164