Mitigating Bias in Radiology Machine Learning: 1. Data Handling

被引:56
|
作者
Rouzrokh, Pouria [1 ]
Khosravi, Bardia [1 ]
Faghani, Shahriar [1 ]
Moassefi, Mana [1 ]
Garcia, Diana V. Vera [1 ]
Singh, Yashbir [1 ]
Zhang, Kuan [1 ]
Conte, Gian Marco [1 ]
Erickson, Bradley J. [1 ]
机构
[1] Mayo Clin, Dept Radiol, Radiol Informat Lab, 200 1st St SW, Rochester, MN 55905 USA
关键词
ARTIFICIAL-INTELLIGENCE; MISSING DATA;
D O I
10.1148/ryai.210290
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Minimizing bias is critical to adoption and implementation of machine learning (ML) in clinical practice. Systematic mathematical biases produce consistent and reproducible differences between the observed and expected performance of ML systems, resulting in suboptimal performance. Such biases can be traced back to various phases of ML development: data handling, model development, and performance evaluation. This report presents 12 suboptimal practices during data handling of an ML study, explains how those practices can lead to biases, and describes what may be done to mitigate them. Authors employ an arbitrary and simplified framework that splits ML data handling into four steps: data collection, data investigation, data splitting, and feature engineering. Examples from the available research literature are provided. A Google Colaboratory Jupyter notebook includes code examples to demonstrate the suboptimal practices and steps to prevent them.& COPY; RSNA, 2022
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Mitigating Bias in Radiology Machine Learning: 3. Performance Metrics
    Faghani, Shahriar
    Khosravi, Bardia
    Zhang, Kuan
    Moassefi, Mana
    Jagtap, Jaidip Manikrao
    Nugen, Fred
    Vahdati, Sanaz
    Kuanar, Shiba P.
    Rassoulinejad-Mousavi, Seyed Moein
    Singh, Yashbir
    Garcia, Diana V. Vera
    Rouzrokh, Pouria
    Erickson, Bradley J.
    [J]. RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2022, 4 (05)
  • [2] Mitigating Bias in Radiology Machine Learning: 2. Model Development
    Zhang, Kuan
    Khosravi, Bardia
    Vahdati, Sanaz
    Faghani, Shahriar
    Nugen, Fred
    Rassoulinejad-Mousavi, Seyed Moein
    Moassefi, Mana
    Jagtap, Jaidip Manikrao M.
    Singh, Yashbir
    Rouzrokh, Pouria
    Erickson, Bradley J.
    [J]. RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2022, 4 (05)
  • [3] Mitigating Bias and Error in Machine Learning to Protect Sports Data
    Zhang, Jie
    Li, Jia
    [J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [4] Mitigating Racial Bias in Machine Learning
    Kostick-Quenet, Kristin M.
    Cohen, I. Glenn
    Gerke, Sara
    Lo, Bernard
    Antaki, James
    Movahedi, Faezah
    Njah, Hasna
    Schoen, Lauren
    Estep, Jerry E.
    Blumenthal-Barby, J. S.
    [J]. JOURNAL OF LAW MEDICINE & ETHICS, 2022, 50 (01): : 92 - 100
  • [5] Mitigating bias in machine learning for medicine
    Vokinger, Kerstin N.
    Feuerriegel, Stefan
    Kesselheim, Aaron S.
    [J]. COMMUNICATIONS MEDICINE, 2021, 1 (01):
  • [6] Mitigating bias in machine learning for medicine
    Kerstin N. Vokinger
    Stefan Feuerriegel
    Aaron S. Kesselheim
    [J]. Communications Medicine, 1
  • [7] Mitigating Bias in Clinical Machine Learning Models
    Julio C. Perez-Downes
    Andrew S. Tseng
    Keith A. McConn
    Sara M. Elattar
    Olayemi Sokumbi
    Ronnie A. Sebro
    Megan A. Allyse
    Bryan J. Dangott
    Rickey E. Carter
    Demilade Adedinsewo
    [J]. Current Treatment Options in Cardiovascular Medicine, 2024, 26 : 29 - 45
  • [8] Mitigating Bias in Clinical Machine Learning Models
    Perez-Downes, Julio C.
    Tseng, Andrew S.
    McConn, Keith A.
    Elattar, Sara M.
    Sokumbi, Olayemi
    Sebro, Ronnie A.
    Allyse, Megan A.
    Dangott, Bryan J.
    Carter, Rickey E.
    Adedinsewo, Demilade
    [J]. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE, 2024, 26 (03) : 29 - 45
  • [9] Limitations of mitigating judicial bias with machine learning
    Kristian Lum
    [J]. Nature Human Behaviour, 1 (7)
  • [10] Designing Against Bias: Identifying and Mitigating Bias in Machine Learning and AI
    Corliss, David J.
    [J]. INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 3, INTELLISYS 2023, 2024, 824 : 411 - 418