NONLINEAR MODEL REDUCTION USING GROUP PROPER ORTHOGONAL DECOMPOSITION

被引:0
|
作者
Dickinson, Benjamin T. [1 ]
Singler, John R. [2 ]
机构
[1] Oregon State Univ, Sch Mech Ind & Mfg Engn, Corvallis, OR 97331 USA
[2] Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO 65409 USA
关键词
model reduction; proper orthogonal decomposition; group finite element; nonlinear; FINITE-ELEMENT METHODS; MANUFACTURED SOLUTIONS; COHERENT STRUCTURES; GALERKIN PROCEDURES; FEEDBACK-CONTROL; HEAT-EQUATION; ORDER; COEFFICIENTS; TURBULENCE; DYNAMICS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a new method to reduce the cost of computing nonlinear terms in projection based reduced order models with global basis functions. We develop this method by extending ideas from the group finite element (GFE) method to proper orthogonal decomposition (POD) and call it the group POD method. Here, a scalar two-dimensional Burgers' equation is used as a model problem for the group POD method. Numerical results show that group POD models of Burgers' equation are as accurate and are computationally more efficient than standard POD models of Burgers' equation.
引用
收藏
页码:356 / 372
页数:17
相关论文
共 50 条
  • [1] Nonlinear Model Order Reduction of Burgers' Equation Using Proper Orthogonal Decomposition
    Abbasi, Farshid
    Mohammadpour, Javad
    [J]. 2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, : 583 - 588
  • [2] Model Order Reduction of Nonlinear Transmission Lines Using Interpolatory Proper Orthogonal Decomposition
    Nouri, Behzad
    Nakhla, Michel S.
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2018, 66 (12) : 5429 - 5438
  • [3] Proper Orthogonal Decomposition Model Order Reduction of Nonlinear IC Models
    Verhoeven, A.
    Striebel, M.
    Rommes, J.
    ter Maten, E. J. W.
    Bechtold, T.
    [J]. PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI 2008, 2010, 15 : 441 - +
  • [4] Model reduction for fluids, using balanced proper orthogonal decomposition
    Rowley, CW
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (03): : 997 - 1013
  • [5] Model reduction of a coupled numerical model using proper orthogonal decomposition
    Li, Xinya
    Chen, Xiao
    Hu, Bill X.
    Navon, I. Michael
    [J]. JOURNAL OF HYDROLOGY, 2013, 507 : 227 - 240
  • [6] Model Reduction for Nonlinear Multibody Systems Based on Proper Orthogonal- and Smooth Orthogonal Decomposition
    Stadlmayr, Daniel
    Witteveen, Wolfgang
    [J]. NONLINEAR DYNAMICS, VOL 1, 2017, : 449 - 457
  • [7] A Krylov enhanced proper orthogonal decomposition method for efficient nonlinear model reduction
    Binion, David
    Chen, Xiaolin
    [J]. FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2011, 47 (07) : 728 - 738
  • [8] Nonlinear Model Order Reduction via Lifting Transformations and Proper Orthogonal Decomposition
    Kramer, Boris
    Willcox, Karen E.
    [J]. AIAA JOURNAL, 2019, 57 (06) : 2297 - 2307
  • [9] Snapshot selection for groundwater model reduction using proper orthogonal decomposition
    Siade, Adam J.
    Putti, Mario
    Yeh, William W. -G.
    [J]. WATER RESOURCES RESEARCH, 2010, 46
  • [10] Model reduction using Balanced Proper Orthogonal Decomposition with frequential snapshots
    Dergham, G.
    Sipp, D.
    Robinet, J-C.
    [J]. SEVENTH IUTAM SYMPOSIUM ON LAMINAR-TURBULENT TRANSITION, 2010, 18 : 477 - +