Gerbes, Clifford modules and the index theorem

被引:10
|
作者
Murray, MK [1 ]
Singer, MA
机构
[1] Univ Adelaide, Dept Pure Math, Adelaide, SA 5005, Australia
[2] Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland
基金
澳大利亚研究理事会;
关键词
index theory; gerbes; twisted K-theory; Dirac operator; Clifford modules;
D O I
10.1023/B:AGAG.0000047514.71785.96
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The use of bundle gerbes and bundle gerbe modules is considered as a replacement for the usual theory of Clifford modules on manifolds that fail to be spin. It is shown that both sides of the Atiyah-Singer index formula for coupled Dirac operators can be given natural interpretations using this language and that the resulting formula is still an identity.
引用
收藏
页码:355 / 367
页数:13
相关论文
共 50 条
  • [1] Gerbes, Clifford Modules and the Index Theorem
    Michael K. Murray
    Michael A. Singer
    Annals of Global Analysis and Geometry, 2004, 26 : 355 - 367
  • [2] On the relationship of gerbes to the odd families index theorem
    Carey, Alan L.
    Wang, Bai-Ling
    JOURNAL OF GEOMETRY AND PHYSICS, 2006, 57 (01) : 23 - 38
  • [3] Algebraic index theorem for symplectic deformations of gerbes.
    Bressler, Paul
    Gorokhovsky, Alexander
    Nest, Ryszard
    Tsygan, Boris
    NONCOMMUTATIVE GEOMETRY AND GLOBAL ANALYSIS, 2011, 546 : 23 - 38
  • [4] ON THE DETERMINATION OF THE RAMIFICATION INDEX IN CLIFFORD THEOREM
    VANDERWAALL, RW
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1988, 31 : 469 - 474
  • [5] Formality theorem for gerbes
    Bressler, Paul
    Gorokhovsky, Alexander
    Nest, Ryszard
    Tsygan, Boris
    ADVANCES IN MATHEMATICS, 2015, 273 : 215 - 241
  • [6] AN INDEX THEOREM FOR MODULES ON A HYPERSURFACE SINGULARITY
    Buchweitz, Ragnar-Olaf
    van Straten, Duco
    MOSCOW MATHEMATICAL JOURNAL, 2012, 12 (02) : 237 - 259
  • [7] Deformations of modules through butterflies and gerbes
    Herr, Leo
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (01) : 362 - 387
  • [8] Dual Clifford modules
    Borovikov, I. A.
    DOKLADY MATHEMATICS, 2016, 94 (02) : 523 - 526
  • [9] Dual Clifford modules
    I. A. Borovikov
    Doklady Mathematics, 2016, 94 : 523 - 526
  • [10] Generalization of a Theorem of Clifford
    Pham Ngoc Anh
    ACTA MATHEMATICA VIETNAMICA, 2016, 41 (03) : 471 - 480