SA-Net: A scale-attention network for medical image segmentation

被引:41
|
作者
Hu, Jingfei [1 ,2 ,3 ,4 ]
Wang, Hua [1 ,2 ,3 ,4 ]
Wang, Jie [5 ]
Wang, Yunqi [1 ,2 ]
He, Fang [2 ]
Zhang, Jicong [1 ,2 ,3 ,4 ,6 ]
机构
[1] Beihang Univ, Sch Biol Sci & Med Engn, Beijing, Peoples R China
[2] Beihang Univ, Hefei Innovat Res Inst, Hefei, Peoples R China
[3] Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Beijing, Peoples R China
[4] Anhui Med Univ, Sch Biomed Engn, Hefei, Peoples R China
[5] Beihang Univ, Sch Comp Sci & Engn, Beijing, Peoples R China
[6] Beihang Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Beijing, Peoples R China
来源
PLOS ONE | 2021年 / 16卷 / 04期
基金
中国国家自然科学基金;
关键词
VESSEL SEGMENTATION;
D O I
10.1371/journal.pone.0247388
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Semantic segmentation of medical images provides an important cornerstone for subsequent tasks of image analysis and understanding. With rapid advancements in deep learning methods, conventional U-Net segmentation networks have been applied in many fields. Based on exploratory experiments, features at multiple scales have been found to be of great importance for the segmentation of medical images. In this paper, we propose a scale-attention deep learning network (SA-Net), which extracts features of different scales in a residual module and uses an attention module to enforce the scale-attention capability. SA-Net can better learn the multi-scale features and achieve more accurate segmentation for different medical image. In addition, this work validates the proposed method across multiple datasets. The experiment results show SA-Net achieves excellent performances in the applications of vessel detection in retinal images, lung segmentation, artery/vein(A/V) classification in retinal images and blastocyst segmentation. To facilitate SA-Net utilization by the scientific community, the code implementation will be made publicly available.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] SA-Net: A deep spectral analysis network for image clustering
    Wang, Jinghua
    Jiang, Jianmin
    NEUROCOMPUTING, 2020, 383 (383) : 10 - 23
  • [2] MSAR-Net: A multi-scale attention residual network for medical image segmentation
    Li, Xiaoheng
    Chen, Cheng
    Chen, Yunqing
    Yu, Ming-an
    Xiao, Ruoxiu
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 104
  • [3] Brain Tumour Segmentation Using S-Net and SA-Net
    Roy, Sunita
    Saha, Rikan
    Sarkar, Suvarthi
    Mehera, Ranjan
    Pal, Rajat Kumar
    Bandyopadhyay, Samir Kumar
    IEEE ACCESS, 2023, 11 : 28658 - 28679
  • [4] SA-NET: A SEQUENCE AWARE NETWORK FOR THE SEGMENTATION OF THE LEFT ATRIUM IN CINE MRI DATASETS
    Uslu, Fatmatulzehra
    Varela, Marta
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 766 - 769
  • [5] SA-NET: SHUFFLE ATTENTION FOR DEEP CONVOLUTIONAL NEURAL NETWORKS
    Zhang, Qing-Long
    Yang, Yu-Bin
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 2235 - 2239
  • [6] TA-Net: Triple attention network for medical image segmentation
    Li, Yang
    Yang, Jun
    Ni, Jiajia
    Elazab, Ahmed
    Wu, Jianhuang
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 137
  • [7] MSA-Net: Multiscale spatial attention network for medical image segmentation
    Fu, Zhaojin
    Li, Jinjiang
    Hua, Zhen
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 70 : 453 - 473
  • [8] AEC-Net: Attention and Edge Constraint Network for Medical Image Segmentation
    Wang, Jingyi
    Zhao, Xu
    Ning, Qingtian
    Qian, Dahong
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 1616 - 1619
  • [9] SCA-Net: A Spatial and Channel Attention Network for Medical Image Segmentation
    Shan, Tong
    Yan, Jiayong
    IEEE ACCESS, 2021, 9 (09): : 160926 - 160937
  • [10] MEA-Net: multilayer edge attention network for medical image segmentation
    Huilin Liu
    Yue Feng
    Hong Xu
    Shufen Liang
    Huizhu Liang
    Shengke Li
    Jiajian Zhu
    Shuai Yang
    Fufeng Li
    Scientific Reports, 12