On the internal state of the Schwarzschild black hole

被引:0
|
作者
Pollock, M. D. [1 ]
机构
[1] Russian Acad Sci, VA Steklov Math Inst, Ulitsa Gubkina 8, Moscow 119991, Russia
来源
关键词
Schwarzschild black hole; HETEROTIC SUPERSTRING THEORY; STRING THEORY; SPACE-TIME; GRAVITATIONAL COLLAPSE; STABILITY; SINGULARITIES; RENORMALIZATION; PERTURBATIONS; RELATIVITY; EQUATIONS;
D O I
10.1142/S0218271817500882
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
If the classical gravitational Lagrangian contains higher-derivative terms R-m, where m >= 2, then vacuum solutions of the Einstein-Hilbert theory L-0 = -R/2 kappa(2) are subject to modification at sufficiently large spacetime curvatures. Previously, we have calculated the effective energy-momentum tensor S-ij due to the quartic gravitational terms alpha R-'3(4) of the heterotic superstring theory in the four-dimensional background spacetime of the Schwarzschild black hole, obtaining an expression which satisfies the strong energy condition, and thereby suggests that the Rm might not remove the central singularity. This conjecture was put forward from a different viewpoint by Horowitz and Myers, who argued that a non-singular black-hole interior resulting from the R-m would be unstable, necessitating reappraisal of the notion of a singular interior spacetime. Here, we show that the chief features of the solution can be simulated by a Bardeen-type ansatz, assuming the spherically symmetric line element ds(2) = e(lambda(r)) dt(2) - e(-lambda(r)) dr(2) - r(2)(d theta(2) + sin(2) theta d phi(2)), where e(lambda(r)) = 1 - 2Mr(n(r)) / (r(2) + r(0)(2))([ n(r)+1]/2) , which, when S-i(j) similar to r(-12), can explain heuristically why S-0(0), S-1(1) < 0 in the shell region kappa M-4/3(1/3) << r << kappa M-2/4 pi of a macroscopic black hole for which kappa M >> 1, while root-gS(i)(j) remains finite at r = 0.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Final state boundary condition of the Schwarzschild black hole
    Ahn, Doyeol
    PHYSICAL REVIEW D, 2006, 74 (08)
  • [2] The black hole final state for the Dirac fields in Schwarzschild spacetime
    Ahn, D.
    Moon, Y. H.
    Mann, R. B.
    Fuentes-Schuller, I.
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (06):
  • [3] Falling into a Schwarzschild black hole
    Mueller, Thomas
    GENERAL RELATIVITY AND GRAVITATION, 2008, 40 (10) : 2185 - 2199
  • [4] Fluctuation on a Schwarzschild black hole
    Liu, Xianming
    Liu, Wenbiao
    CANADIAN JOURNAL OF PHYSICS, 2009, 87 (09) : 1009 - 1012
  • [5] Schwarzschild black hole lensing
    Virbhadra, KS
    Ellis, GFR
    PHYSICAL REVIEW D, 2000, 62 (08) : 1 - 8
  • [6] Validity of black hole complementarity in an accelerating Schwarzschild black hole
    Kim, Wontae
    Nam, Mungon
    PHYSICS LETTERS B, 2025, 861
  • [7] The Fermionic Entanglement Entropy of the Vacuum State of a Schwarzschild Black Hole Horizon
    Finster, Felix
    Lottner, Magdalena
    ANNALES HENRI POINCARE, 2025, 26 (02): : 527 - 595
  • [8] Quantum Teleportation via Entangled State of Light in Schwarzschild Black Hole
    Mirzaei, Sevda
    Akbarieh, Amin Rezaei
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (11) : 3583 - 3592
  • [9] Quantum Teleportation via Entangled State of Light in Schwarzschild Black Hole
    Sevda Mirzaei
    Amin Rezaei Akbarieh
    International Journal of Theoretical Physics, 2020, 59 : 3583 - 3592
  • [10] From Schwarzschild black hole to Kerr-Newman black hole
    Liu, Wen-Biao
    Li, Xiang
    Wuli Xuebao/Acta Physica Sinica, 1999, 48 (10): : 1798 - 1799