Bioprinting Using Mechanically Robust Core-Shell Cell-Laden Hydrogel Strands

被引:47
|
作者
Mistry, Pritesh [1 ]
Aied, Ahmed [1 ]
Alexander, Morgan [2 ]
Shakesheff, Kevin [1 ]
Bennett, Andrew [3 ]
Yang, Jing [1 ]
机构
[1] Univ Nottingham, Sch Pharm, Div Drug Delivery & Tissue Engn, Nottingham NG7 2RD, England
[2] Univ Nottingham, Sch Pharm, Div Surface Anal & Biophys, Nottingham NG7 2RD, England
[3] Univ Nottingham, Sch Life Sci, FRAME Lab, Nottingham NG7 2RD, England
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
bioprinting; hydrogels; mechanical properties; tissue engineering; ALGINATE GEL BEADS; COMPOSITE HYDROGELS; TOUGH HYDROGELS; DEGRADATION; SCAFFOLDS; GELATIN; FIBERS; MICROFIBERS; GENERATION; VIABILITY;
D O I
10.1002/mabi.201600472
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The strand material in extrusion-based bioprinting determines the microenvironments of the embedded cells and the initial mechanical properties of the constructs. One unmet challenge is the combination of optimal biological and mechanical properties in bioprinted constructs. Here, a novel bioprinting method that utilizes core-shell cell-laden strands with a mechanically robust shell and an extracellular matrix-like core has been developed. Cells encapsulated in the strands demonstrate high cell viability and tissue-like functions during cultivation. This process of bioprinting using core-shell strands with optimal biochemical and biomechanical properties represents a new strategy for fabricating functional human tissues and organs.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Bioprinting of a Cell-Laden Conductive Hydrogel Composite
    Spencer, Andrew R.
    Sani, Ehsan Shirzaei
    Soucy, Jonathan R.
    Corbet, Carolyn C.
    Primbetova, Asel
    Koppes, Ryan A.
    Annabi, Nasim
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (34) : 30518 - 30533
  • [2] Controlled generation of cell-laden hydrogel microspheres with core-shell scaffold mimicking microenvironment of tumor
    Li, Yuenan
    Hai, Miaomiao
    Zhao, Yu
    Lv, Yalei
    He, Yi
    Chen, Guo
    Liu, Liyu
    Liu, Ruchuan
    Zhang, Guigen
    [J]. CHINESE PHYSICS B, 2018, 27 (12)
  • [3] Bioprinting of Mechanically Strong Cell-laden Tissue Engineering Constructs
    Yang, J.
    Mistry, P.
    Shakesheff, K.
    Aied, A.
    [J]. TISSUE ENGINEERING PART A, 2015, 21 : S409 - S409
  • [4] 3D bioprinting mesenchymal stem cell-laden construct with core-shell nanospheres for cartilage tissue engineering
    Zhu, Wei
    Cui, Haitao
    Boualam, Benchaa
    Masood, Fahed
    Flynn, Erin
    Rao, Raj D.
    Zhang, Zhi-Yong
    Zhang, Lijie Grace
    [J]. NANOTECHNOLOGY, 2018, 29 (18)
  • [5] COAXIAL BIOPRINTING OF CELL-LADEN CORE FILAMENTS USING A HYALURONIC ACIDTYRAMINE BIOINK
    Banigo, Alma
    Zoetebier, Bram
    Karperien, Marcel
    [J]. TISSUE ENGINEERING PART A, 2023, 29 (11-12) : 1214 - 1214
  • [6] 3D BIOPRINTING OF VASCULAR NETWORKS IN CELL-LADEN HYDROGEL CONSTRUCTS
    Bova, Lorenzo
    Falcone, Dario
    Kavanaugh, Aaron
    Micheli, Sara
    Zanella, Luca
    Benya, Paul
    Billi, Fabrizio
    Cimetta, Elisa
    [J]. TISSUE ENGINEERING PART A, 2022, 28 : S547 - S547
  • [7] Hydrogel Encapsulation Facilitates Rapid-Cooling Cryopreservation of Stem Cell-Laden Core-Shell Microcapsules as Cell-Biomaterial Constructs
    Zhao, Gang
    Liu, Xiaoli
    Zhu, Kaixuan
    He, Xiaoming
    [J]. ADVANCED HEALTHCARE MATERIALS, 2017, 6 (23)
  • [8] 3D bioprinting of a cell-laden antibacterial polysaccharide hydrogel composite
    Rastin, Hadi
    Ramezanpour, Mahnaz
    Hassan, Kamrul
    Mazinani, Arash
    Tung, Tran Thanh
    Vreugde, Sarah
    Losic, Dusan
    [J]. CARBOHYDRATE POLYMERS, 2021, 264
  • [9] A mechanically adaptive "all-sugar" hydrogel for cell-laden injection
    An, Peng
    Wei, Hua
    Zhang, Yansheng
    Zhou, Yang
    Zhang, Hua
    Li, Wenfeng
    Niu, Baolong
    Chen, Jing
    [J]. EUROPEAN POLYMER JOURNAL, 2022, 174
  • [10] Cell-laden Bioprinting Hydrogel Depending on Diffent Compositons For Soft Tissue Engineering
    Park, S.
    Lee, J.
    Kim, W.
    [J]. TISSUE ENGINEERING PART A, 2017, 23 : S85 - S85