Neuro-fuzzy processing of packet dispersion traces for highly variable cross-traffic estimation

被引:0
|
作者
Alzate, Marco A. [1 ,2 ]
Pena, Nestor M. [1 ]
Labrador, Miguel A. [3 ]
机构
[1] Univ Los Andes, Bogota, Colombia
[2] Univ Distrital, Bogota, Colombia
[3] Univ S Florida, Tampa, FL USA
关键词
traffic estimation; packet pair dispersion; neuro-fuzzy systems;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Cross-traffic data rate over the tight link of a path can be estimated using different active probing packet dispersion techniques. Many of these techniques send large amounts of probing traffic but use just a tiny fraction of the measurements to estimate the long-run cross-traffic average. In this paper, we are interested in short-term cross-traffic estimation using bandwidth efficient techniques when the cross-traffic exhibits high variability. High variability increases the cross-correlation coefficient between cross-traffic and dispersion measurements on a wide range of utilization factors and over a long range of measurement time scales. This correlation is exploited with an appropriate statistical inference procedure based on a simple heuristically modified neuro-fuzzy estimator that achieves high accuracy, low computational cost, and very low transmission overhead. The design process led to a very simple architecture, ensuring good generalization properties. Simulation experiments show that, if the variability comes from a complex correlation structure, a single estimator can be used over a long range of utilization factors and measurement periods with no additional training.
引用
收藏
页码:218 / +
页数:2
相关论文
共 10 条
  • [1] A method of traffic variable estimation based on neuro-fuzzy on urban road
    Fu, HY
    [J]. 2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGS, 2003, : 530 - 534
  • [2] Estimation of the mechanical state variable using neuro-fuzzy system
    Than Van Tran
    Kaminski, Marcin
    Szabat, Krzysztof
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2012, 88 (06): : 166 - 169
  • [3] Condition Estimation of Carbon Steel using a Neuro-Fuzzy System and Image Processing
    Ruelas, E. A.
    Vazquez, J. A.
    Yanez, J.
    Lopez, I.
    Bravo, C. F.
    [J]. IEEE LATIN AMERICA TRANSACTIONS, 2015, 13 (07) : 2322 - 2328
  • [4] Processing web-cam images by a neuro-fuzzy approach for vehicular traffic monitoring
    Faro, A.
    Giordano, D.
    Spampinato, C.
    [J]. PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 2, 2005, 2 : 10 - 13
  • [5] Acoustic signal based traffic density state estimation using adaptive neuro-fuzzy classifier
    Department of CSE, G.H. Raisoni College of Engineering, Nagpur, India
    不详
    [J]. WSEAS Trans. Signal Process., 1 (51-64):
  • [6] Acoustic Signal based Traffic Density State Estimation using Adaptive Neuro-Fuzzy Classifier
    Borkar, Prashant
    Malik, L. G.
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ - IEEE 2013), 2013,
  • [7] Application of Image Processing and Adaptive Neuro-fuzzy System for Estimation of the Metallurgical Parameters of a Flotation Process
    Jahedsaravani, A.
    Massinaei, M.
    Marhaban, M. H.
    [J]. CHEMICAL ENGINEERING COMMUNICATIONS, 2016, 203 (10) : 1395 - 1402
  • [8] Wind speed estimation and maximum power point tracking using neuro-fuzzy systems for variable-speed wind generator
    Hermassi, Mahdi
    Krim, Saber
    Kraiem, Youssef
    Hajjaji, Mohamed Ali
    Mimouni, Mohamed Faouzi
    Mtibaa, Abdellatif
    [J]. WIND ENGINEERING, 2024,
  • [9] Modality of Adaptive Neuro-Fuzzy Classifier for Acoustic Signal-Based Traffic Density State Estimation Employing Linguistic Hedges for Feature Selection
    Borkar, Prashant
    Sarode, M. V.
    Malik, L. G.
    [J]. INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2016, 18 (03) : 379 - 394
  • [10] Modality of Adaptive Neuro-Fuzzy Classifier for Acoustic Signal-Based Traffic Density State Estimation Employing Linguistic Hedges for Feature Selection
    Prashant Borkar
    M. V. Sarode
    L. G. Malik
    [J]. International Journal of Fuzzy Systems, 2016, 18 : 379 - 394