Ballistic transport and boundary resistances in inhomogeneous quantum spin chains

被引:26
|
作者
Biella, Alberto [1 ]
Collura, Mario [2 ,3 ,4 ]
Rossini, Davide [5 ,6 ]
De Luca, Andrea [7 ,8 ]
Mazza, Leonardo [9 ]
机构
[1] Univ Paris, Lab Mat & Phenomenes Quant, CNRS, F-75013 Paris, France
[2] Univ Saarland, Theoret Phys, D-66123 Saarbrucken, Germany
[3] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy
[4] SISSA Int Sch Adv Studies, I-34136 Trieste, Italy
[5] Univ Pisa, Dipartimento Fis, Largo Pontecorvo 3, I-56127 Pisa, Italy
[6] Ist Nazl Fis Nucl, Largo Pontecorvo 3, I-56127 Pisa, Italy
[7] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England
[8] Univ Cergy Pontoise, Lab Phys Theor & Modelisat, CNRS, UMR 8089, F-95302 Cergy Pontoise, France
[9] Univ Paris Saclay, Univ Paris Sud, CNRS, LPTMS,UMR 8626, F-91405 Orsay, France
基金
欧盟地平线“2020”;
关键词
MATRIX RENORMALIZATION-GROUP; ENTANGLEMENT ENTROPY; CONDUCTANCE; RELAXATION; DYNAMICS;
D O I
10.1038/s41467-019-12784-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Transport phenomena are central to physics, and transport in the many-body and fully-quantum regime is attracting an increasing amount of attention. It has been recently revealed that some quantum spin chains support ballistic transport of excitations at all energies. However, when joining two semi-infinite ballistic parts, such as the XX and XXZ spin-1/2 models, our understanding suddenly becomes less established. Employing a matrix-product-state ansatz of the wavefunction, we study the relaxation dynamics in this latter case. Here we show that it takes place inside a light cone, within which two qualitatively different regions coexist: an inner one with a strong tendency towards thermalization, and an outer one supporting ballistic transport. We comment on the possibility that even at infinite time the system supports stationary currents and displays a non-zero Kapitza boundary resistance. Our study paves the way to the analysis of the interplay between transport, integrability, and local defects.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Ballistic transport and boundary resistances in inhomogeneous quantum spin chains
    Alberto Biella
    Mario Collura
    Davide Rossini
    Andrea De Luca
    Leonardo Mazza
    Nature Communications, 10
  • [2] NONLINEAR TRANSPORT IN BALLISTIC QUANTUM CHAINS
    CASTANO, E
    KIRCZENOW, G
    ULLOA, SE
    PHYSICAL REVIEW B, 1990, 42 (06): : 3753 - 3756
  • [3] Quantum Spin Transport in Carbon Chains
    Zanolli, Zeila
    Onida, Giovanni
    Charlier, J. -C.
    ACS NANO, 2010, 4 (09) : 5174 - 5180
  • [4] Superfluid transport in quantum spin chains
    Hoffman, Silas
    Loss, Daniel
    Tserkovnyak, Yaroslav
    PHYSICAL REVIEW B, 2023, 107 (08)
  • [5] Dynamics of the geometric phase in inhomogeneous quantum spin chains
    Cao, Kaiyuan
    Yang, Shuxiang
    Hu, Yayun
    Yang, Guangwen
    PHYSICAL REVIEW B, 2023, 108 (02)
  • [6] Boundary effect and quantum phases in spin chains
    Ryu, Jinhyeok
    Cho, Jaeyoon
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2024, 85 (04) : 281 - 285
  • [7] Ballistic spin transport without net charge transport in quantum wells
    Smirl, AL
    Stevens, MJ
    Bhat, RDR
    Najmaie, A
    Sipe, JE
    van Driel, HM
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2004, 19 (04) : S369 - S371
  • [8] Persistent Ballistic Entanglement Spreading with Optimal Control in Quantum Spin Chains
    Lu, Ying
    Shi, Pei
    Wang, Xiao-Han
    Hu, Jie
    Ran, Shi-Ju
    PHYSICAL REVIEW LETTERS, 2024, 133 (07)
  • [9] Theory of quantum energy transfer in spin chains: Superexchange and ballistic motion
    Yu, Claire X.
    Wu, Lian-Ao
    Segal, Dvira
    JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (23):
  • [10] SPIN DYNAMICS AND QUANTUM TRANSPORT IN QUANTUM SPIN CHAINS UNDER AN OSCILLATING FIELD
    Kudo, K.
    Monteiro, T. S.
    COMPLEX PHENOMENA IN NANOSCALE SYSTEMS, 2009, : 253 - +