Density versions of Schur's theorem for ideals generated by submeasures

被引:10
|
作者
Filipow, Rafal [1 ]
Szuca, Piotr [1 ]
机构
[1] Univ Gdansk, Inst Math, PL-80952 Gdansk, Poland
关键词
Bolzano-Weierstrass theorem; Bolzano-Weierstrass property; Ideal convergence; Statistical density; Statistical convergence; Subsequence; Schur's theorem;
D O I
10.1016/j.jcta.2009.12.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize ideals of subsets of natural numbers for which some versions of Schur's theorem hold. These are similar to generalizations shown by Bergelson (1986) in [1] and Frankl, Graham and Rodl (1990) in [7]. Additionally, we prove a generalization of an iterated version of Ramsey's theorem. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:943 / 956
页数:14
相关论文
共 50 条
  • [1] DENSITY VERSIONS OF 2 GENERALIZATIONS OF SCHUR THEOREM
    BERGELSON, V
    HINDMAN, N
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1988, 48 (01) : 32 - 38
  • [2] Dominant Dimension and Almost Relatively True Versions of Schur’s Theorem
    Steffen Koenig
    Milan Journal of Mathematics, 2010, 78 : 457 - 479
  • [3] Dominant Dimension and Almost Relatively True Versions of Schur's Theorem
    Koenig, Steffen
    MILAN JOURNAL OF MATHEMATICS, 2010, 78 (02) : 457 - 479
  • [4] On Duflo's theorem that minimal primitive ideals are centrally generated
    Borho, W
    JOURNAL OF ALGEBRA, 1999, 220 (01) : 346 - 364
  • [5] Linked partition ideals and the Alladi-Schur theorem
    Andrews, George E.
    Chern, Shane
    Li, Zhitai
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2022, 189
  • [6] Lebesgue's density theorem and definable selectors for ideals
    Mueller, Sandra
    Schlicht, Philipp
    Schrittesser, David
    Weinert, Thilo
    ISRAEL JOURNAL OF MATHEMATICS, 2022, 249 (02) : 501 - 551
  • [7] Lebesgue’s density theorem and definable selectors for ideals
    Sandra Müller
    Philipp Schlicht
    David Schrittesser
    Thilo Weinert
    Israel Journal of Mathematics, 2022, 249 : 501 - 551
  • [8] The converse of Schur's theorem
    Niroomand, Peyman
    ARCHIV DER MATHEMATIK, 2010, 94 (05) : 401 - 403
  • [9] Polynomial Schur's Theorem
    Liu, Hong
    Pach, Peter Pal
    Sandor, Csaba
    COMBINATORICA, 2022, 42 (SUPPL 2) : 1357 - 1384
  • [10] The converse of Schur’s theorem
    Peyman Niroomand
    Archiv der Mathematik, 2010, 94 : 401 - 403