A Compact Symplectic High-Order Scheme for Time-Domain Maxwell's Equations

被引:7
|
作者
Wang, Jianying [1 ]
Liu, Peng [1 ]
Long, Yunliang [1 ]
机构
[1] Sun Yat Sen Univ, Dept Elect & Commun Engn, Guangzhou 510275, Guangdong, Peoples R China
关键词
Compact difference; finite-difference time domain (FDTD); symplectic scheme; DIFFERENCE; PROPAGATOR;
D O I
10.1109/LAWP.2010.2049470
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A fourth-order compact symplectic finite-difference time-domain (CS-FDTD) method for modeling long-range propagation is proposed. Theoretical analyses of numerical stability and dispersion are presented, and the comparisons to Fang's high-order FDTD and symplectic FDTD (S-FDTD) method are provided. One-dimensional (1-D) numerical simulation is performed to investigate the distortion of the long-range pulse propagation. It indicates the improved performance of the CS-FDTD approach compared to the S-FDTD method.
引用
收藏
页码:371 / 374
页数:4
相关论文
共 50 条
  • [1] A novel high-order time-domain scheme for three-dimensional Maxwell's equations
    Huang, Zhi-Xiang
    Sha, Wei E. I.
    Wu, Xian-Liang
    Chen, Ming-Sheng
    [J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2006, 48 (06) : 1123 - 1125
  • [2] Designing high-order, time-domain numerical solvers for Maxwell's equations
    Young, JL
    Nystrom, JF
    [J]. IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM - ANTENNAS: GATEWAYS TO THE GLOBAL NETWORK, VOLS 1-4, 1998, : 546 - 549
  • [3] HIGH-ORDER UPWIND SCHEMES FOR SOLVING TIME-DOMAIN MAXWELL EQUATIONS
    CIONI, JP
    FEZOUI, L
    ISSAUTIER, D
    [J]. RECHERCHE AEROSPATIALE, 1994, (05): : 319 - 328
  • [4] Numerical analysis of a multi-symplectic scheme for the time-domain Maxwell's equations
    Wang, Yushun
    Jiang, Juan
    Cai, Wenjun
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (12)
  • [5] Parallel higher-order-compact time-domain solutions to Maxwell's equations
    Hayes, PR
    O'Keefe, M
    Gopinath, A
    [J]. 1999 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-4, 1999, : 1285 - 1288
  • [6] The Force-Gradient Symplectic Finite-Difference Time-Domain Scheme for Maxwell's Equations
    Zhong, Shuangying
    Liu, Song
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2015, 63 (02) : 834 - 838
  • [7] Multisymplectic Preissman scheme for the time-domain Maxwell's equations
    Cai, Jiaxiang
    Wang, Yushun
    Qiao, Zhonghua
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (03)
  • [8] Nodal high-order methods on unstructured grids - I. Time-domain solution of Maxwell's equations
    Hesthaven, JS
    Warburton, T
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 181 (01) : 186 - 221
  • [9] Optimal symplectic integrators for numerical solution of time-domain Maxwell's equations
    Huang, Z. X.
    Wu, X. L.
    Sha, Wei E. I.
    Chen, M. S.
    [J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2007, 49 (03) : 545 - 547
  • [10] Long time stable compact fourth-order scheme for time domain Maxwell's equations
    Wang, J.
    Long, Y.
    [J]. ELECTRONICS LETTERS, 2010, 46 (14) : 995 - U58