Toric geometry and equivariant bifurcations

被引:1
|
作者
Stewart, I
Dias, APS [1 ]
机构
[1] Univ Porto, Ctr Matemat Aplicada, Dept Matemat Pura, P-4050 Porto, Portugal
[2] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
关键词
toric geometry; equivariant bifurcation; Euclidean-invariant;
D O I
10.1016/S0167-2789(00)00104-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Many problems in equivariant bifurcation theory involve the computation of invariant functions and equivariant mappings for the action of a torus group. We discuss general methods for finding these based on some elementary considerations related to toric geometry, a powerful technique in algebraic geometry. This approach leads to interesting combinatorial questions about cones in lattices, which lead to explicit calculations of minimal generating sets of invariants, from which the equivariants are easily deduced. We also describe the computation of Hilbert series for torus invariants and equivariants within the same combinatorial framework. As an example, we apply these methods to the interaction of two linear modes of a Euclidean-invariant PDE on a rectangular domain with periodic boundary conditions. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:235 / 261
页数:27
相关论文
共 50 条
  • [1] EQUIVARIANT TORIC GEOMETRY AND EULER-MACLAURIN FORMULAE - AN OVERVIEW
    Cappell, Sylvain E.
    Maxim, Laurentiu G.
    Schuermann, Joerg
    Shaneson, Julius L.
    [J]. REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2024, 69 (02): : 105 - 128
  • [2] EQUIVARIANT SHEAVES ON TORIC VARIETIES
    LUNTS, V
    [J]. COMPOSITIO MATHEMATICA, 1995, 96 (01) : 63 - 83
  • [3] DESCRIBING TORIC VARIETIES AND THEIR EQUIVARIANT COHOMOLOGY
    Franz, Matthias
    [J]. COLLOQUIUM MATHEMATICUM, 2010, 121 (01) : 1 - 16
  • [4] Equivariant completions of toric contraction morphisms
    Fujino, Osamu
    [J]. TOHOKU MATHEMATICAL JOURNAL, 2006, 58 (03) : 303 - 321
  • [5] Equivariant stable sheaves and toric GIT
    Clarke, Andrew
    Tipler, Carl
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2023, 153 (02) : 385 - 416
  • [6] Equivariant primary decomposition and toric sheaves
    M. Perling
    G. Trautmann
    [J]. manuscripta mathematica, 2010, 132 : 103 - 143
  • [7] Equivariant Burnside groups and toric varieties
    Kresch, Andrew
    Tschinkel, Yuri
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (05) : 3013 - 3039
  • [8] Equivariant embeddings into smooth toric varieties
    Hausen, J
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2002, 54 (03): : 554 - 570
  • [9] Equivariant Chow cohomology of toric varieties
    Payne, S
    [J]. MATHEMATICAL RESEARCH LETTERS, 2006, 13 (01) : 29 - 41
  • [10] Equivariant primary decomposition and toric sheaves
    Perling, M.
    Trautmann, G.
    [J]. MANUSCRIPTA MATHEMATICA, 2010, 132 (1-2) : 103 - 143