Improved computation of the standard error in the regression coefficient estimates of a multivariate calibration model

被引:17
|
作者
Faber, NM
机构
[1] 2806 JB Gouda
关键词
D O I
10.1021/ac0001479
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A multivariate calibration model consists of regression coefficient estimates whose significance depends on the associated standard errors. A recently introduced leave-one-out (LOO) method for computing these standard errors is modified to achieve consistency with the jackknife method. The proposed modification amounts to multiplying the LOO standard errors with the factor (n - 1)/n(1/2), where n denotes the number of calibration samples. The potential improvement for realistic values of n is illustrated using a practical example.
引用
收藏
页码:4675 / 4676
页数:2
相关论文
共 50 条