Bayesian object recognition with Baddeley's delta loss

被引:25
|
作者
Rue, H [1 ]
Syversveen, AR [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Math Sci, N-7034 Trondheim, Norway
关键词
Bayesian inference; unsymmetric loss functions; object recognition; template models; Markov chain Monte Carlo methods; marked point processes; distance between images; confocal microscopy images;
D O I
10.1017/S0001867800008089
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A common problem in Bayesian object recognition using marked point process models is to produce a point estimate of the true underlying object configuration: the number of objects and the size, location and shape of each object. We use decision theory and the concept of loss functions to design a more reasonable estimator for this purpose, rather than using the common zero-one loss corresponding to the maximum a posteriori estimator. We propose to use the squared Delta-metric of Baddeley (1992) as our loss function and demonstrate that the corresponding optimal Bayesian estimator can be well approximated by combining Markov chain Monte Carlo methods with simulated annealing into a two-step algorithm. The proposed loss function is tested using a marked point process model developed for locating cells in confocal microscopy images.
引用
收藏
页码:64 / 84
页数:21
相关论文
共 50 条
  • [1] Bayesian image classification with Baddeley's delta loss
    Frigessi, A
    Rue, H
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1997, 6 (01) : 55 - 73
  • [2] On the role of distance transformations in Baddeley's Delta Metric
    Lopez-Molina, C.
    Iglesias-Rey, S.
    Bustince, H.
    De Baets, B.
    INFORMATION SCIENCES, 2021, 569 : 479 - 495
  • [3] On the role of distance transformations in Baddeley's Delta Metric
    Lopez-Molina, C.
    Iglesias-Rey, S.
    Bustince, H.
    De Baets, B.
    Information Sciences, 2021, 569 : 479 - 495
  • [4] Baddeley’s Delta metric for local contrast computation in hyperspectral imagery
    Lopez-Molina C.
    Ayala-Martini D.
    Lopez-Maestresalas A.
    Bustince H.
    Lopez-Molina, C. (carlos.lopez@unavarra.es), 1600, Springer Verlag (06): : 121 - 132
  • [5] THE LOSS OF OBJECT - THE RELATION OF NARCISSISTIC OBJECT TO THE OBJECT OF RECOGNITION
    ESPASA, FP
    REVUE FRANCAISE DE PSYCHANALYSE, 1989, 53 (01): : 235 - 240
  • [6] Learning and Bayesian shape extraction for object recognition
    Mio, W
    Srivastava, A
    Liu, XW
    COMPUTER VISION - ECCV 2004, PT 4, 2004, 2034 : 62 - 73
  • [7] Bayesian color constancy for outdoor object recognition
    Tsin, Y
    Collins, RT
    Ramesh, V
    Kanade, T
    2001 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2001, : 1132 - 1139
  • [8] Image segmentation and object recognition by Bayesian grouping
    Kalitzin, SN
    Staal, JJ
    Romeny, BMT
    Viergever, MA
    2000 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL III, PROCEEDINGS, 2000, : 580 - 583
  • [9] A Bayesian approach to object identification in pattern recognition
    Ritter, G
    Gallegos, MT
    15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, PROCEEDINGS: PATTERN RECOGNITION AND NEURAL NETWORKS, 2000, : 418 - 421
  • [10] Computationally efficient spatial forecast verification using Baddeley's delta image metric
    Gilleland, Eric
    Lee, Thomas C. M.
    Gotway, John Halley
    Bullock, R. G.
    Brown, Barbara G.
    MONTHLY WEATHER REVIEW, 2008, 136 (05) : 1747 - 1757