Robustness of ML estimators of location-scale mixtures

被引:2
|
作者
Hennig, C [1 ]
机构
[1] Univ Hamburg, SPST, Fachbereich Math, D-20146 Hamburg, Germany
关键词
D O I
10.1007/3-540-26981-9_16
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The robustness of ML estimators for mixture models with fixed and estimated number of components s is investigated by the definition and computation of a breakdown point for mixture model parameters and by considering some artificial examples. The ML estimator of the Normal mixture model is compared with the approach of adding a "noise component" (Fraley and Raftery (1998)) and by mixtures of t-distributions (Peel and McLachlan (2000)). It turns out that the estimation of the number of mixture components is crucial for breakdown robustness. To attain robustness for fixed s, the addition of an improper noise component is proposed. A guideline to choose a lower scale bound is given.
引用
收藏
页码:128 / 137
页数:10
相关论文
共 50 条
  • [1] Asymptotic properties and robustness of minimum dissimilarity estimators of location-scale parameters
    Bassetti, F.
    Regazzini, E.
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 2006, 50 (02) : 171 - 186
  • [2] Breakdown points for maximum likelihood estimators of location-scale mixtures
    Hennig, C
    [J]. ANNALS OF STATISTICS, 2004, 32 (04): : 1313 - 1340
  • [3] On the characterization of maximum likelihood estimators for location-scale families
    Hurlimann, W
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1998, 27 (02) : 495 - 508
  • [4] Weakly Informative Reparameterizations for Location-Scale Mixtures
    Karnary, Kaniav
    Lee, Jeong Eun
    Robert, Christian P.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2018, 27 (04) : 836 - 848
  • [5] Some thoughts on the Bayesian robustness of location-scale modelsl
    Mendoza, Manuel
    Gutierrez-Pena, Eduardo
    [J]. CHILEAN JOURNAL OF STATISTICS, 2010, 1 (01): : 35 - 58
  • [6] THE CONTINUOUS MULTIVARIATE LOCATION-SCALE MODEL REVISITED - A TALE OF ROBUSTNESS
    FERNANDEZ, C
    OSIEWALSKI, J
    STEEL, MFJ
    [J]. BIOMETRIKA, 1994, 81 (03) : 588 - 594
  • [7] Adaptive Bayesian density estimation with location-scale mixtures
    Kruijer, Willem
    Rousseau, Judith
    van der Vaart, Aad
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2010, 4 : 1225 - 1257
  • [8] Homogeneity testing under finite location-scale mixtures
    Chen, Jiahua
    Li, Pengfei
    Liu, Guanfu
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2020, 48 (04): : 670 - 684
  • [9] Optimal principal points estimators of multivariate distributions of location-scale and location-scale-rotation families
    Shun Matsuura
    Thaddeus Tarpey
    [J]. Statistical Papers, 2020, 61 : 1629 - 1643
  • [10] Optimal principal points estimators of multivariate distributions of location-scale and location-scale-rotation families
    Matsuura, Shun
    Tarpey, Thaddeus
    [J]. STATISTICAL PAPERS, 2020, 61 (04) : 1629 - 1643