Elastic Kirchhoff-Helmholtz synthetic seismograms

被引:9
|
作者
Druzhinin, A
Pedersen, H
Campillo, M
Kim, WH
机构
[1] Univ Bergen, Inst Solid Earth Phys, N-5007 Bergen, Norway
[2] Univ Grenoble 1, IRIGM, F-38041 Grenoble, France
[3] Gyeongsang Natl Univ, Dept Geol, Chinju 660701, South Korea
基金
俄罗斯基础研究基金会;
关键词
synthetic seismograms; elastic waves; Kirchhoff; Green's function; inhomogeneity; anisotropy; hybrid;
D O I
10.1007/s000240050103
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
An approximate hybrid formulation of the elastic Kirchhof-Helmholtz theory for numerical simulation of seismic wave propagation in multilayered inhomogeneous and transversely isotropic media is developed. The layer boundaries can be curved or irregular. We insert a general computational ansatz into the basic elastodynamic divergence theorem to express the unknown variables in terms of slowly varying amplitude and phase functions. In situations where the geometrical optics approximation becomes invalid, more accurate methods can be applied to compute these functions. In particular, the kernel remains regular when rays have caustics on the target integral surface. Branch points are taken into account to include head waves. Both elementary solutions and WKBJ expansion are employed to compute the Green's function. To reduce the resulting integral to a numerical form, the surface is divided into a set of segments and the above functions are replaced by their local polynomial series in the vicinity of each segment. It allows us to construct an error-predictive numerical algorithm in which the truncation error is prescribed via the higher order terms of such series. We show, using geologically relevant synthetic models, the performance of the proposed technique.
引用
收藏
页码:17 / 45
页数:29
相关论文
共 50 条
  • [1] Elastic Kirchhoff-Helmholtz Synthetic Seismograms
    A. Druzhinin
    H. Pedersen
    M. Campillo
    W. Kim
    [J]. pure and applied geophysics, 1998, 151 : 17 - 45
  • [2] The Kirchhoff-Helmholtz integral for anisotropic elastic media
    Schleicher, J
    Tygel, M
    Ursin, B
    Bleistein, N
    [J]. WAVE MOTION, 2001, 34 (04) : 353 - 364
  • [3] KIRCHHOFF-HELMHOLTZ REFLECTION SEISMOGRAMS IN A LATERALLY INHOMOGENEOUS MULTI-LAYERED ELASTIC MEDIUM .1. THEORY
    FRAZER, LN
    SEN, MK
    [J]. GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1985, 80 (01): : 121 - 147
  • [4] KIRCHHOFF-HELMHOLTZ REFLECTION SEISMOGRAMS IN A LATERALLY INHOMOGENEOUS MULTI-LAYERED ELASTIC MEDIUM .2. COMPUTATIONS
    SEN, MK
    FRAZER, LN
    [J]. GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1985, 82 (03): : 415 - 437
  • [5] The Kirchhoff-Helmholtz integral pair
    Tygel, M
    Schleicher, J
    Santos, LT
    [J]. JOURNAL OF COMPUTATIONAL ACOUSTICS, 2001, 9 (04) : 1383 - 1394
  • [6] An asymptotic inverse to the Kirchhoff-Helmholtz integral
    Tygel, M
    Schleicher, J
    Santos, LT
    Hubral, P
    [J]. INVERSE PROBLEMS, 2000, 16 (02) : 425 - 445
  • [7] Anti-aliased Kirchhoff-Helmholtz transformations
    Druzhinin, A
    [J]. GEOPHYSICAL PROSPECTING, 1999, 47 (05) : 757 - 783
  • [8] APPLICATIONS OF THE KIRCHHOFF-HELMHOLTZ INTEGRAL TO PROBLEMS IN SEISMOLOGY
    SCOTT, P
    HELMBERGER, D
    [J]. GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1983, 72 (01): : 237 - 254
  • [9] Explicit Kirchhoff-Helmholtz integrals and their accurate numerical implementation
    Druzhinin, A
    [J]. WAVE MOTION, 1998, 28 (02) : 119 - 148
  • [10] Acoustics of thermoviscous fluids: The Kirchhoff-Helmholtz representation in generalized form
    Morfey, C. L.
    Wright, M. C. M.
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2023, 153 (06): : 3447 - 3468