Enhance tensor RPCA-LRX anomaly detection algorithm for hyperspectral image

被引:1
|
作者
A, Ruhan [1 ,2 ]
Mu, Xiaodong [2 ]
He, Jingyuan [2 ]
Zhang, Jinjin [2 ]
机构
[1] Xian Peihua Univ, Xian, Shaanxi, Peoples R China
[2] Xian Res Inst Hitech, Xian, Shaanxi, Peoples R China
关键词
Reed-Xiaoli (RX); enhanced TRPCA (ETRPCA); weighted tensor Schatten-pnorm minimization (WTSNM); hyperspectral anomaly detection (HAD); hyperspectral image (HSI);
D O I
10.1080/10106049.2022.2063400
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this paper, a spectral-spatial anomaly detection method based on tensor de-composition is proposed. Firstly, tensor data is used to represent hyperspectral data to retain its original spectral and spatial information. Second, this method reconstructs the hyperspectral data into low-rank tensors and sparse tensors. This method uses the weighted tensor Schatten-p norm minimization (WTSNM) to stand for rank minimization. WTSNM treats different singular values differently. Finally, the reconstructed sparse tensor is used as input data and the LRX method is used to detect abnormal targets. As this approach can effectively utilize the spectral information and spatial information of hyperspectral images, it greatly improves detection accuracy, experimental results on five real data sets demonstrate that the proposed method outperforms several state-of-the-art algorithms.
引用
收藏
页码:11976 / 11997
页数:22
相关论文
共 50 条
  • [1] Enhance Tensor RPCA-Based Mahalanobis Distance Method for Hyperspectral Anomaly Detection
    Ruhan, A.
    Mu, Xiaodong
    He, Jingyuan
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [2] A Tensor Decomposition-Based Anomaly Detection Algorithm for Hyperspectral Image
    Zhang, Xing
    Wen, Gongjian
    Dai, Wei
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10): : 5801 - 5820
  • [3] A Fast Recursive LRX Algorithm with Extended Morphology Profile for Hyperspectral Anomaly Detection
    Ruhan, A.
    Mu, Xiaodong
    Feng, Lei
    He, Jingyuan
    [J]. CANADIAN JOURNAL OF REMOTE SENSING, 2021, 47 (05) : 731 - 748
  • [4] Anomaly Detection of Hyperspectral Image via Tensor Completion
    Wang, Jingxuan
    Xia, Yong
    Zhang, Yanning
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (06) : 1099 - 1103
  • [5] A Hyperspectral Imagery Anomaly Detection Algorithm Based on Cokurtosis Tensor
    Meng Lingbo
    Geng Xiurui
    [J]. JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2019, 41 (01) : 150 - 155
  • [6] HYPERSPECTRAL TARGET DETECTION BASED ON TENSOR RPCA WITH CONSTRAINED ENERGY REGULARIZATION
    Zhou, Kun
    Wei, Jie
    Wu, Zebin
    Xu, Yang
    Wei, Zhihui
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3267 - 3270
  • [7] Application of hyperspectral image anomaly detection algorithm for Internet of things
    Xinjian Wang
    Guangchun Luo
    Ling Tian
    [J]. Multimedia Tools and Applications, 2019, 78 : 5155 - 5167
  • [8] Application of hyperspectral image anomaly detection algorithm for Internet of things
    Wang, Xinjian
    Luo, Guangchun
    Tian, Ling
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (05) : 5155 - 5167
  • [9] Joint Reconstruction and Anomaly Detection From Compressive Hyperspectral Images Using Mahalanobis Distance-Regularized Tensor RPCA
    Xu, Yang
    Wu, Zebin
    Chanussot, Jocelyn
    Wei, Zhihui
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (05): : 2919 - 2930
  • [10] Structure Tensor and Guided Filtering-Based Algorithm for Hyperspectral Anomaly Detection
    Xie, Weiying
    Jiang, Tao
    Li, Yunsong
    Jia, Xiuping
    Lei, Jie
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (07): : 4218 - 4230