Moments of random multiplicative functions, II: High moments

被引:17
|
作者
Harper, Adam J. [1 ]
机构
[1] Univ Warwick, Coventry, W Midlands, England
基金
美国国家科学基金会;
关键词
random multiplicative functions; random Euler products; moments; orthogonal behavior; unitary behavior; martingales; VALUES;
D O I
10.2140/ant.2019.13.2277
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine the order of magnitude of E vertical bar Sigma(n <= x) f(n)vertical bar(2q) up to factors of size e(O(q2)), where f(n) is a Steinhaus or Rademacher random multiplicative function, for all real 1 <= q <= c log x= log log x. In the Steinhaus case, we show that E vertical bar Sigma(n <= x) f(n)vertical bar(2q) = e(O(q2)) x(q)(log x/q log(2q)))((q-1)2) on this whole range. In the Rademacher case, we find a transition in the behavior of the moments when q approximate to (1 + root 5)/2, where the size starts to be dominated by "orthogonal" rather than "unitary" behavior. We also deduce some consequences for the large deviations of Sigma(n <= x) f(n). The proofs use various tools, including hypercontractive inequalities, to connect E vertical bar Sigma(n <= x) f(n)vertical bar(2q) with the q-th moment of an Euler product integral. When q is large, it is then fairly easy to analyze this integral. When q is close to 1 the analysis seems to require subtler arguments, including Doob's L-p maximal inequality for martingales.
引用
收藏
页码:2277 / 2321
页数:45
相关论文
共 50 条
  • [1] MOMENTS OF RANDOM MULTIPLICATIVE FUNCTIONS AND TRUNCATED CHARACTERISTIC POLYNOMIALS
    Heap, Winston P.
    Lindqvist, Sofia
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2016, 67 (04): : 683 - 714
  • [2] MOMENTS OF RANDOM MULTIPLICATIVE FUNCTIONS, I: LOW MOMENTS, BETTER THAN SQUAREROOT CANCELLATION, AND CRITICAL MULTIPLICATIVE CHAOS
    Harper, Adam J.
    [J]. FORUM OF MATHEMATICS PI, 2020, 8
  • [3] Moments of polynomials with random multiplicative coefficients
    Benatar, Jacques
    Nishry, Alon
    Rodgers, Brad
    [J]. MATHEMATIKA, 2022, 68 (01) : 191 - 216
  • [4] Higher moments for random multiplicative measures
    Falconer, Kenneth J.
    [J]. JOURNAL OF FRACTAL GEOMETRY, 2015, 2 (03) : 229 - 247
  • [5] ON POWER MOMENTS OF THE HECKE MULTIPLICATIVE FUNCTIONS
    Chakraborty, Kalyan
    Minamide, Makoto
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 99 (03) : 334 - 340
  • [6] Random matrix theory and moments of moments of L-functions
    Andrade, J. C.
    Best, C. G.
    [J]. RANDOM MATRICES-THEORY AND APPLICATIONS, 2023, 12 (03)
  • [7] Non-degeneracy, moments, dimension, and multifractal analysis for random multiplicative measures - (Random multiplicative multifractal measures, Part II)
    Barral, J
    Mandelbrot, BB
    [J]. FRACTAL GEOMETRY AND APPLICATIONS: A JUBILEE OF BENOIT MANDELBROT - MULTIFRACTALS, PROBABILITY AND STATISTICAL MECHANICS, APPLICATIONS, PT 2, 2004, 72 : 17 - 52
  • [8] Moments of Additive Functions on Random Permutations
    E. Manstavičius
    [J]. Acta Applicandae Mathematicae, 2007, 97 : 119 - 127
  • [9] Moments of additive functions on random permutations
    Manstavicius, E.
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2007, 97 (1-3) : 119 - 127
  • [10] On moments of multiplicative coalescents
    Konarovskyi, Vitalii
    Limic, Vlada
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (03): : 2025 - 2045