Multiple solutions for a quasilinear Schrodinger equation involving critical Hardy-Sobolev exponent with Robin boundary condition

被引:0
|
作者
Deng, Yin [1 ]
Jia, Gao [1 ]
机构
[1] Univ Shanghai Sci & Technol, Coll Sci, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Quasilinear Schrodinger equation; Robin boundary; critical Hardy-Sobolev exponent; Mountain Pass theorem; POSITIVE SOLUTIONS; SOLITON-SOLUTIONS; NEUMANN PROBLEMS; EXISTENCE;
D O I
10.1080/17476933.2021.1932850
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the existence of multiple solutions for a quasilinear Schrodinger equation with Robin boundary condition involving critical Hardy-Sobolev exponent as follows: {-Delta u - Delta(u(2))u + u = (u(2))(2+)((s)-1)/vertical bar x vertical bar(s)u + f (x, u) in Omega, partial derivative u/partial derivative n + beta(X)u = 0 on partial derivative Omega, where f is an element of C((Omega) over bar x R, R) satisfies suitable condition. Using variable substitution and Mountain Pass Theorem, we prove that the above equation admits at least two nontrivial solutions.
引用
收藏
页码:2602 / 2618
页数:17
相关论文
共 50 条