Modified MgH2 Hydrogen Storage Properties Based on Grapefruit Peel-Derived Biochar

被引:8
|
作者
Zhang, Jiaqi [1 ]
Hou, Quanhui [1 ,2 ]
Guo, Xintao [1 ]
Yang, Xinglin [1 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Energy & Power, Zhenjiang 212003, Jiangsu, Peoples R China
[2] Yancheng Inst Technol, Sch Automot Engn, Yancheng 224051, Peoples R China
关键词
MgH2; biomass carbon; hydrogen storage performance; recyclability; catalyst; PERFORMANCE; IMPROVEMENT; CATALYSTS;
D O I
10.3390/catal12050517
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon materials play an important role in the development of solid hydrogen storage materials. The main purpose of this work is to study the low-cost synthesis of biomass carbon (BC) and its positive effect on the hydrogen storage behavior of magnesium hydride (MgH2). Herein, it is proven that when biomass carbon (BC) is used together with magnesium hydride (MgH2), biomass carbon can be used as an adsorption and desorption channel for hydrogen. The initial dehydrogenation temperature of MgH2 + 10 wt% BC composite is 250 degrees C, which is 110 degrees C lower than that of pure MgH2. In addition, the MgH2 + 10 wt% BC composite system can complete all dehydrogenation processes within 10 min at 350 degrees C. Meanwhile, 5.1 wt% H-2 can also be dehydrogenated within 1 h at 300 degrees C. Under the same conditions, MgH2 hardly starts to release hydrogen. After complete dehydrogenation, the composite can start to absorb hydrogen at 110 degrees C. Under the conditions of 225 degrees C and 3 MPa, 6.13 wt% H-2 can be absorbed within 1 h, basically reaching the theoretical dehydrogenation limit. Cycling experiments show that the MgH2 + 10 wt% BC composite has a good stability. After 10 cycles, the hydrogen storage capacity shows almost no obvious decline. It is believed that this study can help in the research and development of efficient carbon-based multifunctional catalysts.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Hydrogen Storage Properties of Pure MgH2
    Kwak, Young Jun
    Lee, Seong Ho
    Park, Hye Ryoung
    Song, Myoung Youp
    KOREAN JOURNAL OF MATERIALS RESEARCH, 2013, 23 (05): : 266 - 270
  • [2] Hydrogen Storage Properties of MgH2 with Doping Catalyst
    Shi W.
    Jia C.
    Lu B.
    Ma Z.
    Xiyou Jinshu/Chinese Journal of Rare Metals, 2022, 46 (01): : 87 - 95
  • [3] Hydrogen storage properties of nanocrystalline MgH2 and MgH2/Sn nanocomposite synthesized by ball milling
    Imamura, Hayao
    Tanaka, Kenichi
    Kitazawa, Ichirou
    Sumi, Takeshi
    Sakata, Yoshihisa
    Nakayama, Noriaki
    Ooshima, Shinji
    JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 484 (1-2) : 939 - 942
  • [4] Improved hydrogen storage properties of MgH2 with Ni-based compounds
    Zhang, Qiuyu
    Zang, Lei
    Huang, Yike
    Gao, Panyu
    Jiao, Lifang
    Yuan, Huatang
    Wang, Yijing
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (38) : 24247 - 24255
  • [5] Hydrogen storage properties of MgH2 processed by cold forging
    Cesario Asselli, Alexandre Augusto
    Leiva, Daniel Rodrigo
    Cozentino, Gustavo Henrique
    Floriano, Ricardo
    Huot, Jacques
    Ishikawa, Tomaz Toshimi
    Botta, Walter Jose
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 615 : S719 - S724
  • [6] Hydrogen storage properties of MgH2 mechanically milled with α and β SiC
    Kurko, Sandra
    Raskovic, Zeljka
    Novakovic, Nikola
    Mamula, Bojana Paskas
    Jovanovic, Zoran
    Bascarevic, Zvezdana
    Nouakovic, Jasmina Grbovie
    Matovic, Ljiljana
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (01) : 549 - 554
  • [7] Can γ-MgH2 improve the hydrogen storage properties of magnesium?
    Shen, Chaoqi
    Aguey-Zinsou, Kondo-Francois
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (18) : 8644 - 8652
  • [8] Effects of CNTs on the hydrogen storage properties of MgH2 and MgH2-BCC composite
    Ranjbar, A.
    Ismail, M.
    Guo, Z. P.
    Yu, X. B.
    Liu, H. K.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (15) : 7821 - 7826
  • [9] MgH2 + FeNb nanocomposites for hydrogen storage
    Santos, S. F.
    Ishikawa, T. T.
    Botta, W. J.
    Huot, J.
    MATERIALS CHEMISTRY AND PHYSICS, 2014, 147 (03) : 557 - 562
  • [10] Hydrogen Desorption Properties of MgH2
    Malahayati, M.
    Yufita, Evi
    Ismail, I.
    Mursal, M.
    Idroes, Rinaldi
    Jalil, Zulkarnain
    BULLETIN OF CHEMICAL REACTION ENGINEERING AND CATALYSIS, 2021, 16 (02): : 280 - 285