A Pulsed Magnet System for a Field-Reversed Configuration Experiment

被引:2
|
作者
Lieurance, Dennis W. [1 ]
Madura, David D. [2 ]
Snitchler, Gregory L. [2 ]
机构
[1] PowerOn Inc, San Marcos, CA USA
[2] Tri Alpha Energy, Rancho Santa Margarita, CA 92688 USA
关键词
Electromagnetic analysis; electromagnets; fusion power generation; plasma magnetic confinement;
D O I
10.1109/TASC.2016.2531580
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
From a magnet engineering perspective, the field-reversed configuration (FRC) fusion concept is commercially attractive due to its cylindrical configuration. Essentially, all large coils are solenoidal, which enables efficient structural support and relative ease of manufacturing, thereby enhancing commercial viability. A design option for future experimental FRC devices, which is currently under study, would require a large number of normal conducting electromagnets to produce the required magnetic field configuration for approximately 30 ms. One of the major challenges with such a system is a requirement to achieve a magnetic field profile which evolves with time and in which both eddy currents in major components and large plasma currents are also important magnetic field contributors. This paper describes contemplated magnetic configurations and the main types of coils and the coil design choices for each. It also discusses transient analysis performed to predict fields internal to a conductive vessel, while ramping magnetic fields, and accounting for vessel eddy current and plasma contributions. An estimate of harmonic errors due to displacement of the coils is provided. The dominant error field component is found to be from the dipole contribution. Harmonic errors from eddy currents due to plasma are briefly discussed.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Confinement analyses of the high-density field-reversed configuration plasma in the field-reversed configuration experiment with a liner
    Zhang, S
    Intrator, TP
    Wurden, GA
    Waganaar, WJ
    Taccetti, JM
    Renneke, R
    Grabowski, C
    Ruden, EL
    [J]. PHYSICS OF PLASMAS, 2005, 12 (05) : 1
  • [2] Visible bremsstrahlung tomographic diagnostic for the pulsed high density field-reversed configuration experiment
    Gota, H.
    Andreason, S. P.
    Votroubek, G. R.
    Pihl, C. J.
    Slough, J. T.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2006, 77 (10):
  • [3] THE LARGE-S FIELD-REVERSED CONFIGURATION EXPERIMENT
    HOFFMAN, AL
    CAREY, LN
    CRAWFORD, EA
    HARDING, DG
    DEHART, TE
    MCDONALD, KF
    MCNEIL, JL
    MILROY, RD
    SLOUGH, JT
    MAQUEDA, R
    WURDEN, GA
    [J]. FUSION TECHNOLOGY, 1993, 23 (02): : 185 - 207
  • [4] THE FIELD-REVERSED CONFIGURATION HEATING EXPERIMENT ON SHIVA STAR
    Grabowski, C.
    Degnan, J. H.
    Domonkos, M.
    Amdahl, D.
    Ruden, E. L.
    Wurden, G. A.
    Weber, T. E.
    [J]. 2016 43RD IEEE INTERNATIONAL CONFERENCE ON PLASMA SCIENCE (ICOPS), 2016,
  • [5] Modeling of field-reversed configuration experiment with large safety factor
    Steinhauer, Loren
    Guo, Houyang
    Hoffman, Alan
    Ishida, Akio
    Ryutov, Dmitri
    [J]. PHYSICS OF PLASMAS, 2006, 13 (05)
  • [6] Anatomy of a field-reversed configuration
    Steinhauer, L. C.
    Roche, T.
    Steinhauer, J. D.
    [J]. PHYSICS OF PLASMAS, 2020, 27 (11)
  • [7] EXPERIMENTS OF A FIELD-REVERSED CONFIGURATION
    WANG, GY
    WANG, SZ
    CUI, HZ
    LIAO, JC
    [J]. CHINESE PHYSICS, 1984, 4 (04): : 874 - 878
  • [8] Development of visible light tomographic imaging system for field-reversed configuration collisional merging experiment
    Seki, T.
    Yamanaka, T.
    Asai, T.
    Kobayashi, D.
    Takahashi, T.
    Morelli, J.
    Okada, S.
    Gota, H.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2022, 93 (10):
  • [9] Field-Reversed Configuration Induced by a Paramagnetic Field
    Twarog, D.
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2013, 41 (02) : 280 - 289
  • [10] A high performance field-reversed configuration
    Binderbauer, M. W.
    Tajima, T.
    Steinhauer, L. C.
    Garate, E.
    Tuszewski, M.
    Schmitz, L.
    Guo, H. Y.
    Smirnov, A.
    Gota, H.
    Barnes, D.
    Deng, B. H.
    Thompson, M. C.
    Trask, E.
    Yang, X.
    Putvinski, S.
    Rostoker, N.
    Andow, R.
    Aefsky, S.
    Bolte, N.
    Bui, D. Q.
    Ceccherini, F.
    Clary, R.
    Cheung, A. H.
    Conroy, K. D.
    Dettrick, S. A.
    Douglass, J. D.
    Feng, P.
    Galeotti, L.
    Giammanco, F.
    Granstedt, E.
    Gupta, D.
    Gupta, S.
    Ivanov, A. A.
    Kinley, J. S.
    Knapp, K.
    Korepanov, S.
    Hollins, M.
    Magee, R.
    Mendoza, R.
    Mok, Y.
    Necas, A.
    Primavera, S.
    Onofri, M.
    Osin, D.
    Rath, N.
    Roche, T.
    Romero, J.
    Schroeder, J. H.
    Sevier, L.
    Sibley, A.
    [J]. PHYSICS OF PLASMAS, 2015, 22 (05)