Weakly nonlinear instability of annular viscous sheets

被引:2
|
作者
Xie, Luo [1 ]
Ye, Han-Yu [2 ]
Ren, Feng [1 ]
Hu, Hai-Bao [1 ]
机构
[1] Northwestern Polytech Univ, Sch Marine Sci & Technol, Xian 710072, Shaanxi, Peoples R China
[2] Beijing Interstellar Glory Space Technol Co Ltd, Beijing 100176, Peoples R China
基金
中国国家自然科学基金;
关键词
Reynolds number - Stability;
D O I
10.1063/5.0038669
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A second-order perturbation analysis has been performed on the nonlinear temporal instability of para-sinuous disturbances on annular viscous sheets moving in an inviscid stationary gas medium. The mathematical expressions of second-order interface disturbances, velocity, and pressure have been derived. The nonlinear instability of annular viscous sheets has several characteristics which differ from that of planar viscous sheets: (1) both the first-order interface disturbances and the second-order interface disturbances contribute to breakup; (2) the zero-wavenumber component of interface disturbances in the second-order solution is nonzero; (3) the second-order interface disturbance is para-varicose in most cases, but para-sinuous for some cases. As with planar viscous sheets, it was found that viscosity plays a dual role in the nonlinear instability of annular viscous sheets. However, with the decrease in the ratio of inner radius to sheet thickness, the interval between the upper and the lower critical Reynolds numbers shrinks, and when the ratio of inner radius to sheet thickness is less than a certain value, the dual effect of viscosity vanishes.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Weakly nonlinear instability of planar viscous sheets
    Yang, Lijun
    Wang, Chen
    Fu, Qingfei
    Du, Minglong
    Tong, Mingxi
    [J]. JOURNAL OF FLUID MECHANICS, 2013, 735 : 249 - 287
  • [2] Weakly nonlinear instability of planar viscoelastic sheets
    Wang, Chen
    Yang, Li-jun
    Xie, Luo
    Chen, Pi-min
    [J]. PHYSICS OF FLUIDS, 2015, 27 (01)
  • [3] Weakly nonlinear instability of a viscous liquid jet
    Renoult, Marie-Charlotte
    Brenn, Guenter
    Mutabazi, Innocent
    [J]. 28TH CONFERENCE ON LIQUID ATOMIZATION AND SPRAY SYSTEMS, ILASS-EUROPE 2017, 2017, : 613 - 620
  • [4] NONLINEAR INSTABILITY ANALYSIS OF AN ANNULAR SWIRLING VISCOUS LIQUID SHEET
    Yan, Kai
    Jog, Milind A.
    Ning, Zhi
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION - 2012, VOL 7, PTS A-D, 2013, : 2437 - 2444
  • [5] Nonlinear spatial instability of an annular swirling viscous liquid sheet
    Kai Yan
    Milind A. Jog
    Zhi Ning
    [J]. Acta Mechanica, 2013, 224 : 3071 - 3090
  • [6] Nonlinear spatial instability of an annular swirling viscous liquid sheet
    Yan, Kai
    Jog, Milind A.
    Ning, Zhi
    [J]. ACTA MECHANICA, 2013, 224 (12) : 3071 - 3090
  • [7] WEAKLY NONLINEAR INSTABILITY OF A LIQUID JET IN A VISCOUS-GAS
    IBRAHIM, EA
    LIN, SP
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1992, 59 (02): : S291 - S296
  • [8] Weakly nonlinear varicose-mode instability of planar liquid sheets
    Liu, Lu-Jia
    Yang, Li-Jun
    Ye, Han-Yu
    [J]. PHYSICS OF FLUIDS, 2016, 28 (03)
  • [9] Effects of unrelaxed stress tension on the weakly nonlinear instability of viscoelastic sheets
    Xie, Luo
    Yang, Li-Jun
    Fu, Qing-Fei
    Qin, Li-Zi
    [J]. PHYSICS OF FLUIDS, 2016, 28 (10)
  • [10] Weakly nonlinear instability of viscoelastic planar sheets with initial varicose disturbances
    Xie, Luo
    Yang, Li Jun
    Wang, Jun-Jie
    Qin, Li-Zi
    [J]. AEROSPACE SCIENCE AND TECHNOLOGY, 2018, 79 : 373 - 382