IMPROVED LOWER BOUND FOR THE NUMBER OF KNOTTED HAMILTONIAN CYCLES IN SPATIAL EMBEDDINGS OF COMPLETE GRAPHS

被引:2
|
作者
Hirano, Yoshiyasu [1 ]
机构
[1] Niigata Univ, Grad Sch Sci & Technol, Niigata 9502181, Japan
关键词
Spatial graph; embedded graph; intrinsically knotted; knotted Hamiltonian cycle;
D O I
10.1142/S0218216510007991
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that every spatial embedding of the complete graph K(8) contains at least 3 knotted Hamiltonian cycles, and that every spatial embedding of K(n) contains at least 3(n - 1)(n - 2)...8 knotted Hamiltonian cycles, for n > 8.
引用
收藏
页码:705 / 708
页数:4
相关论文
共 50 条
  • [1] LOWER BOUND ON THE NUMBER OF HAMILTONIAN CYCLES OF GENERALIZED PETERSEN GRAPHS
    Lu, Weihua
    Yang, Chao
    Ren, Han
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (01) : 297 - 305
  • [2] A lower bound for the number of triangular embeddings of some complete graphs and complete regular tripartite graphs
    Grannell, M. J.
    Griggs, T. S.
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2008, 98 (04) : 637 - 650
  • [3] A lower bound for the number of orientable triangular embeddings of some complete graphs
    Grannell, M. J.
    Knor, M.
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2010, 100 (02) : 216 - 225
  • [4] A lower bound on the number of hamiltonian cycles
    Horák, P
    Stacho, L
    DISCRETE MATHEMATICS, 2000, 222 (1-3) : 275 - 280
  • [5] Linking number of monotonic cycles in random book embeddings of complete graphs
    Aguillon, Yasmin
    Burkholder, Eric
    Cheng, Xingyu
    Eddins, Spencer
    Harrell, Emma
    Kozai, Kenji
    Leake, Elijah
    Morales, Pedro
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2023, 32 (06)
  • [6] Lower bounds for the number of Hamilton cycles in cubic bipartite hamiltonian graphs
    Chia, GL
    Ong, SH
    ALGEBRAS AND COMBINATORICS, 1999, : 113 - 118
  • [7] On the number of triangular embeddings of complete graphs and complete tripartite graphs
    Grannell, M. J.
    Knor, M.
    JOURNAL OF GRAPH THEORY, 2012, 69 (04) : 370 - 382
  • [8] On the number of Hamiltonian cycles in Dirac graphs
    Sárközy, GN
    Selkow, SM
    Szemerédi, E
    DISCRETE MATHEMATICS, 2003, 265 (1-3) : 237 - 250
  • [9] AN IMPROVED LOWER BOUND ON THE NUMBER OF LIMIT CYCLES BIFURCATING FROM A HAMILTONIAN PLANAR VECTOR FIELD OF DEGREE 7
    Johnson, Tomas
    Tucker, Warwick
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (05): : 1451 - 1458
  • [10] A lower bound on the number of Hamiltonian cycles through a prescribed edge in a crossed cube
    Chen, Jheng-Cheng
    Lai, Chia-Jui
    Tsai, Chang-Hsiung
    Lai, Pao-Lien
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (19) : 9885 - 9892