Predicting Slope Stability Failure through Machine Learning Paradigms

被引:54
|
作者
Dieu Tien Bui [1 ,2 ]
Moayedi, Hossein [3 ,4 ]
Gor, Mesut [5 ]
Jaafari, Abolfazl [6 ]
Foong, Loke Kok [7 ]
机构
[1] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam
[2] Univ South Eastern Norway, Dept Business & IT, Geog Informat Syst Grp, N-3800 Bo I Telemark, Norway
[3] Ton Duc Thang Univ, Dept Management Sci & Technol Dev, Ho Chi Minh City, Vietnam
[4] Ton Duc Thang Univ, Fac Civil Engn, Ho Chi Minh City, Vietnam
[5] Firat Univ, Dept Civil Engn, Div Geotech Engn, TR-23119 Elazig, Turkey
[6] AREEO, Res Inst Forests & Rangelands, Tehran 13185116, Iran
[7] Univ Teknol Malaysia, Fac Engn, Sch Civil Engn, Ctr Trop Geoengn Geotrop, Johor Baharu 81310, Malaysia
关键词
machine learning; slope failure; finite element analysis; weka; GAUSSIAN PROCESS REGRESSION; BEARING CAPACITY; NEURAL-NETWORKS; MODEL;
D O I
10.3390/ijgi8090395
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this study, we employed various machine learning-based techniques in predicting factor of safety against slope failures. Different regression methods namely, multi-layer perceptron (MLP), Gaussian process regression (GPR), multiple linear regression (MLR), simple linear regression (SLR), support vector regression (SVR) were used. Traditional methods of slope analysis (e.g., first established in the first half of the twentieth century) used widely as engineering design tools. Offering more progressive design tools, such as machine learning-based predictive algorithms, they draw the attention of many researchers. The main objective of the current study is to evaluate and optimize various machine learning-based and multilinear regression models predicting the safety factor. To prepare training and testing datasets for the predictive models, 630 finite limit equilibrium analysis modelling (i.e., a database including 504 training datasets and 126 testing datasets) were employed on a single-layered cohesive soil layer. The estimated results for the presented database from GPR, MLR, MLP, SLR, and SVR were assessed by various methods. Firstly, the efficiency of applied models was calculated employing various statistical indices. As a result, obtained total scores 20, 35, 50, 10, and 35, respectively for GPR, MLR, MLP, SLR, and SVR, revealed that the MLP outperformed other machine learning-based models. In addition, SVR and MLR presented an almost equal accuracy in estimation, for both training and testing phases. Note that, an acceptable degree of efficiency was obtained for GPR and SLR models. However, GPR showed more precision. Following this, the equation of applied MLP and MLR models (i.e., in their optimal condition) was derived, due to the reliability of their results, to be used in similar slope stability problems.
引用
收藏
页数:35
相关论文
共 50 条
  • [1] Development of a framework for the prediction of slope stability using machine learning paradigms
    Rajan, K. C.
    Aryal, Milan
    Sharma, Keshab
    Bhandary, Netra Prakash
    Pokhrel, Richa
    Acharya, Indra Prasad
    [J]. NATURAL HAZARDS, 2024,
  • [2] Machine-Learning-Based Classification Approaches toward Recognizing Slope Stability Failure
    Moayedi, Hossein
    Dieu Tien Bui
    Kalantar, Bahareh
    Foong, Loke Kok
    [J]. APPLIED SCIENCES-BASEL, 2019, 9 (21):
  • [3] Machine Learning: A Novel Approach to Predicting Slope Instabilities
    Kothari, Upasna Chandarana
    Momayez, Moe
    [J]. INTERNATIONAL JOURNAL OF GEOPHYSICS, 2018, 2018
  • [4] Machine Learning Models for Slope Stability Classification of Circular Mode Failure: An Updated Database and Automated Machine Learning (AutoML) Approach
    Ma, Junwei
    Jiang, Sheng
    Liu, Zhiyang
    Ren, Zhiyuan
    Lei, Dongze
    Tan, Chunhai
    Guo, Haixiang
    [J]. SENSORS, 2022, 22 (23)
  • [5] Feature validity during machine learning paradigms for predicting biodiesel purity
    Moayedi, Hossein
    Aghel, Babak
    Foong, Loke Kok
    Dieu Tien Bui
    [J]. FUEL, 2020, 262 (262)
  • [6] Predicting slope safety using an optimized machine learning model
    Khajehzadeh, Mohammad
    Keawsawasvong, Suraparb
    [J]. HELIYON, 2023, 9 (12)
  • [7] Predicting Hardware Failure Using Machine Learning
    Chigurupati, Asha
    Thibaux, Romain
    Lassar, Noah
    [J]. ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM 2016 PROCEEDINGS, 2016,
  • [8] Phase Stability Through Machine Learning
    Arroyave, Raymundo
    [J]. JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION, 2022, 43 (06) : 606 - 628
  • [9] Phase Stability Through Machine Learning
    Raymundo Arróyave
    [J]. Journal of Phase Equilibria and Diffusion, 2022, 43 : 606 - 628
  • [10] Comparison of machine learning algorithms for slope stability prediction using an automated machine learning approach
    Kurnaz, Talas Fikret
    Erden, Caner
    Dagdeviren, Ugur
    Demir, Alparslan Serhat
    Kokcam, Abdullah Hulusi
    [J]. NATURAL HAZARDS, 2024, 120 (08) : 6991 - 7014