Homoclinic solutions for an anomalous diffusion system

被引:6
|
作者
Ding, Yanheng [1 ]
Guo, Qi [2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
Fractional diffusion system; Nonlinearity; Homoclinic solution;
D O I
10.1016/j.jmaa.2018.06.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that there exists at least one homoclinic solution for the anomalous diffusion system, and there are infinitely many geometrically distinct solutions if the nonlinearity is Z(2) -symmetric. Moreover, the concentrating phenomenon of a type of anomalous diffusion system is discussed here. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:860 / 879
页数:20
相关论文
共 50 条
  • [1] Asymptotic behavior of global solutions of an anomalous diffusion system
    Hnaien, Dorsaf
    Kellil, Ferdaous
    Lassoued, Rafika
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 421 (02) : 1519 - 1530
  • [2] Global existence of solutions to a nonlinear anomalous diffusion system
    Ahmad, Bashir
    Alsaedi, Ahmed
    Kirane, Mokhtar
    [J]. APPLIED MATHEMATICS LETTERS, 2016, 59 : 60 - 64
  • [3] A Generalized Diffusion Equation: Solutions and Anomalous Diffusion
    Lenzi, Ervin K.
    Somer, Aloisi
    Zola, Rafael S.
    da Silva, Luciano R.
    Lenzi, Marcelo K.
    [J]. FLUIDS, 2023, 8 (02)
  • [4] Blow Up of Solutions of a Nonlinear Anomalous Reaction-Diffusion System
    Aroldo Pérez
    José Villa-Morales
    [J]. Bulletin of the Brazilian Mathematical Society, New Series, 2021, 52 : 791 - 802
  • [5] Blow Up of Solutions of a Nonlinear Anomalous Reaction-Diffusion System
    Perez, Aroldo
    Villa-Morales, Jose
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2021, 52 (04): : 791 - 802
  • [6] Anomalous water diffusion in salt solutions
    Ding, Yun
    Hassanali, Ali A.
    Parrinello, Michele
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (09) : 3310 - 3315
  • [7] Lie symmetry solutions for anomalous diffusion
    Abraham-Shrauner, B
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (12): : 2547 - 2553
  • [8] Fractional nonlinear diffusion equation, solutions and anomalous diffusion
    Silva, A. T.
    Lenzi, E. K.
    Evangelista, L. R.
    Lenzi, M. K.
    da Silva, L. R.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 375 (01) : 65 - 71
  • [9] Anomalous diffusion of quinone in salt solutions
    Freundlich, H
    Kruger, D
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1939, 43 (08): : 981 - 988
  • [10] Anomalous diffusion in dilute solid solutions
    Krishnamurthy, R.
    Srolovitz, D. J.
    Mendelev, M. I.
    [J]. ACTA MATERIALIA, 2007, 55 (15) : 5289 - 5296