Understanding the influence of noise, sampling density and data distribution on spatial prediction quality through the use of simulated data

被引:0
|
作者
Pokrajac, D [1 ]
Obradovic, Z [1 ]
Fiez, T [1 ]
机构
[1] Washington State Univ, Sch Elect Engn & Comp Sci, Pullman, WA 99164 USA
关键词
decision-support systems; Al-supported simulation; regression analysis; least-squares methods; agriculture;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The influence of data parameters (sensor error, unexplained variance, sampling density and data distribution) on spatial data prediction quality is considered through the use of a spatial data simulator. Performance of linear and non-linear regression models (feedforward neural networks) is compared on simulated agricultural data, but the results can be generalized to geological, oceanographic and other spatial domains. For a highly non-linear response variable, non-linear models are shown to perform better regardless of unexplained variance and sensor error, but linear models outperform non-linear models when the sampling density of spatial data is not sufficient to produce accurate interpolated values. In the presence of non-homogenous data distributions, a significant prediction quality improvement can be achieved by using specialized local models assuming that distributions are properly discovered.
引用
收藏
页码:706 / 708
页数:3
相关论文
共 50 条
  • [1] Spatial sampling density and data quality analysis in Yongxin area
    Zhang, Zhi-Lin
    Shang, Ying-Jun
    Di, Zhi-Xin
    Tian, Gen-Hai
    Zhu, Yong
    Ren, Hong-Qin
    [J]. Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2008, 43 (SUPPL. 2): : 55 - 58
  • [2] Examination of the influence of data aggregation and sampling density on spatial estimation
    Vucetic, S
    Fiez, T
    Obradovic, Z
    [J]. WATER RESOURCES RESEARCH, 2000, 36 (12) : 3721 - 3730
  • [3] Spatial distribution prediction model for lake water quality parameters from ultra-sparse sampling data with recent satellite data
    Lin, Mengxue
    Zhu, Ming
    Zhou, Kejian
    Tao, Yunfei
    Xiao, Xiao
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (21) : 6579 - 6594
  • [4] Optimal sampling for spatial prediction of functional data
    Bohorquez, Martha
    Giraldo, Ramon
    Mateu, Jorge
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2016, 25 (01): : 39 - 54
  • [5] Optimal sampling for spatial prediction of functional data
    Martha Bohorquez
    Ramón Giraldo
    Jorge Mateu
    [J]. Statistical Methods & Applications, 2016, 25 : 39 - 54
  • [6] The influence of sampling design on spatial data quality in a geographic citizen science project
    Brown, Greg
    Rhodes, Jonathan
    Lunney, Daniel
    Goldingay, Ross
    Fielding, Kelly
    Garofano, Nicole
    Hetherington, Scott
    Hopkins, Marama
    Green, Jo
    McNamara, Skye
    Brace, Angie
    Vass, Lorraine
    Swankie, Linda
    McAlpine, Clive
    [J]. TRANSACTIONS IN GIS, 2019, : 1184 - 1203
  • [7] The Use of Geographically Weighted Regression for Spatial Prediction: An Evaluation of Models Using Simulated Data Sets
    Harris, P.
    Fotheringham, A. S.
    Crespo, R.
    Charlton, M.
    [J]. MATHEMATICAL GEOSCIENCES, 2010, 42 (06) : 657 - 680
  • [8] The Use of Geographically Weighted Regression for Spatial Prediction: An Evaluation of Models Using Simulated Data Sets
    P. Harris
    A. S. Fotheringham
    R. Crespo
    M. Charlton
    [J]. Mathematical Geosciences, 2010, 42 : 657 - 680
  • [9] Characteristics analysis on high density spatial sampling seismic data
    Xiling Cai
    Xuewei Liu
    Chunyan Deng
    Yingme Lv
    [J]. Applied Geophysics, 2006, 3 (1) : 48 - 54
  • [10] Spatial event classification using simulated water quality data
    Oliker, Nurit
    Ohar, Ziv
    Ostfeld, Avi
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2016, 77 : 71 - 80