Representations of surface groups with universally finite mapping class group orbit

被引:0
|
作者
Lawrence, Brian [1 ]
Litt, Daniel [2 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Univ Toronto, Dept Math, Toronto, ON M5G 3A9, Canada
关键词
P-CURVATURE; SUBGROUPS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Sigma(g,n) be the orientable genus g surface with n punctures, where 2 - 2g - n < 0. Let rho : pi(1) (Sigma(g,n)) -> GL(m) (C) be a representation. Suppose that for each finite covering map f : Sigma(g'),(n') -> Sigma(g,n), the orbit of (the isomorphism class of) f* (rho) under the mapping class group MCG(Sigma(g',n')) of Sigma(g',n') is finite. Then we show that rho has finite image. The result is motivated by the Grothendieck-Katz p-curvature conjecture, and gives a reformulation of the p-curvature conjecture in terms of isomonodromy.
引用
收藏
页码:1793 / 1815
页数:23
相关论文
共 50 条