Energy spectrum and chemical composition of cosmic rays between 0.3 and 10 PeV determined from the Cherenkov-light and charged-particle distributions in air showers

被引:0
|
作者
Arqueros, F
Barrio, JA
Bernlöhr, K
Bojahr, H
Calle, I
Contreras, JL
Cortina, J
Deckers, T
Denninghoff, S
Fonseca, V
Gebauer, J
González, JC
Haustein, V
Heinzelmann, G
Hohl, H
Horns, D
Ibarra, A
Kestel, M
Kirstein, O
Kornmayer, H
Kranich, D
Krawczynski, H
Lindner, A
Lorenz, E
Magnussen, N
Meyer, H
Mirzoyan, R
Moralejo, A
Padilla, L
Petry, D
Plaga, R
Prahl, J
Rauterberg, G
Rhode, W
Röhring, A
Samorski, M
Schmele, D
Schröder, F
Stamm, W
Wiebel-Sooth, B
Willmer, M
Wittek, W
机构
[1] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany
[2] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany
[3] Univ Complutense Madrid, Fac Ciencias Fis, E-28040 Madrid, Spain
[4] Univ Hamburg, Inst Expt Phys 2, D-22761 Hamburg, Germany
[5] Univ Kiel, Inst Expt & Angew Phys, D-24118 Kiel, Germany
[6] Berg Univ Wuppertal, Fachbereich Phys, D-42097 Wuppertal, Germany
来源
ASTRONOMY & ASTROPHYSICS | 2000年 / 359卷 / 02期
关键词
ISM : cosmic rays;
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Measurements of the lateral distribution of Cherenkov photons with the wide-angle atmospheric Cherenkov light detector array AIROBICC and of the charged particle lateral distribution with the scintillator matrix of the HEGRA air-shower detector complex in air showers are reported. They are used in conjunction to determine the energy spectrum and coarse chemical composition of charged cosmic rays in the energy interval from 0.3 PeV to 10 PeV. With the atmospheric shower-front sampling technique these detectors measure the electromagnetic component of an extensive air shower via the lateral density distribution of the shower particles and of the Cherenkov photons. The data are compared with events generated with the CORSIKA program package with the QGSJET hadronic-event generator. Consistency checks performed with primary energy-reconstruction methods based on different shower observables indicate satisfactory agreement between these extensive air shower simulations and the experimental data. This permits to derive results concerning the energy spectrum and composition of charged cosmic rays. The energy spectrum features a so called "knee" at an energy of E-knee=3.98(-0.83)(+4.66)(stat) +/- 0.53(syst) PeV. Power law fits to the differential energy spectrum yield indices of -2.72(-0.03)(+0.02)(stat) +/- 0.07(syst) below and -3.22(-0.59)(+0.47)(stat) +/- 0.08(syst) above the knee. The best-fit elongation rate for the whole energy range is determined to 78.3 +/- 1.0 (stat) +/- 6.2 (syst) g/cm(2). At the highest energies it seems to decrease slightly. The best-fit fraction of light nuclei decreases from 37(-21)(+28)% (combined statistical and systematic) to 8(-8)(+32)% (combined statistical and systematic) in the energy range discussed here. A detailed study of the systematic errors reveals that a non-changing composition cannot be excluded.
引用
收藏
页码:682 / 694
页数:13
相关论文
共 13 条
  • [1] A new method to reconstruct the energy and determine the composition of cosmic rays from the measurement of Cherenkov light and particle densities in extensive air showers
    Lindner, A
    [J]. ASTROPARTICLE PHYSICS, 1998, 8 (04) : 235 - 252
  • [2] Measuring extensive air showers with Cherenkov light detectors of the Yakutsk array: the energy spectrum of cosmic rays
    Ivanov, A. A.
    Knurenko, S. P.
    Sleptsov, I. Ye
    [J]. NEW JOURNAL OF PHYSICS, 2009, 11
  • [3] 'Fine structure' in the energy spectrum, and changes in the mass composition, of cosmic rays in the energy range 0.3-10 PeV
    Erlykin, AD
    Wolfendale, AW
    [J]. ASTRONOMY & ASTROPHYSICS, 1999, 350 (01) : L1 - L4
  • [4] The all-particle energy spectrum of cosmic rays from 10 TeV to 1 PeV measured with HAWC
    Morales-Soto, J.A.
    Arteaga-Velázquez, J.C.
    [J]. arXiv, 2022,
  • [5] Detection of reflected Cherenkov light from extensive air showers in the SPHERE experiment as a method of studying superhigh energy cosmic rays
    R. A. Antonov
    T. V. Aulova
    E. A. Bonvech
    V. I. Galkin
    T. A. Dzhatdoev
    D. A. Podgrudkov
    T. M. Roganova
    D. V. Chernov
    [J]. Physics of Particles and Nuclei, 2015, 46 : 60 - 93
  • [6] Detection of reflected Cherenkov light from extensive air showers in the SPHERE experiment as a method of studying superhigh energy cosmic rays
    Antonov, R. A.
    Aulova, T. V.
    Bonvech, E. A.
    Galkin, V. I.
    Dzhatdoev, T. A.
    Podgrudkov, D. A.
    Roganova, T. M.
    Chernov, D. V.
    [J]. PHYSICS OF PARTICLES AND NUCLEI, 2015, 46 (01) : 60 - 93
  • [7] The energy spectrum of cosmic rays above 1015 eV derived from air Cherenkov light measurements in Yakutsk
    Ivanov, AA
    Knurenko, SP
    Sleptsov, IY
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2003, 122 : 226 - 230
  • [8] Estimation of the energy of the electron-photon component of cosmic rays on the basis of data for Cherenkov light from ultrahigh-energy extensive air showers
    S. P. Knurenko
    A. A. Ivanov
    I. E. Sleptsov
    A. V. Sabourov
    [J]. JETP Letters, 2006, 83 : 473 - 477
  • [9] Estimation of the energy of the electron-photon component of cosmic rays on the basis of data for Cherenkov light from ultrahigh-energy extensive air showers
    Knurenko, S. P.
    Ivanov, A. A.
    Sleptsov, I. E.
    Sabourov, A. V.
    [J]. JETP LETTERS, 2006, 83 (11) : 473 - 477
  • [10] Measurements of All-Particle Energy Spectrum and Mean Logarithmic Mass of Cosmic Rays from 0.3 to 30 PeV with LHAASO-KM2A
    Cao, Zhen
    Aharonian, F.
    Axikegu
    Bai, Y. X.
    Bao, Y. W.
    Bastieri, D.
    Bi, X. J.
    Bi, Y. J.
    Bian, W.
    Bukevich, A. V.
    Cao, Q.
    Cao, W. Y.
    Cao, Zhe
    Chang, J.
    Chang, J. F.
    Chen, A. M.
    Chen, E. S.
    Chen, H. X.
    Chen, Liang
    Chen, Lin
    Chen, Long
    Chen, M. J.
    Chen, M. L.
    Chen, Q. H.
    Chen, S.
    Chen, S. H.
    Chen, S. Z.
    Chen, T. L.
    Chen, Y.
    Cheng, N.
    Cheng, Y. D.
    Cui, M. Y.
    Cui, S. W.
    Cui, X. H.
    Cui, Y. D.
    Dai, B. Z.
    Dai, H. L.
    Dai, Z. G.
    Danzengluobu
    Dong, X. Q.
    Duan, K. K.
    Fan, J. H.
    Fan, Y. Z.
    Fang, J.
    Fang, J. H.
    Fang, K.
    Feng, C. F.
    Feng, H.
    Feng, L.
    Feng, S. H.
    [J]. PHYSICAL REVIEW LETTERS, 2024, 132 (13)