Criterium for the index theorem on the lattice

被引:0
|
作者
Bicudo, P [1 ]
机构
[1] Dept Fis, P-1049001 Lisbon, Portugal
关键词
D O I
暂无
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We study how far the Index Theorem can be extrapolated from the continuum to finite lattices with finite topological charge densities. To examine how the Wilson action approximates the Index theorem, we specialize in the lattice version of the Schwinger model. We propose a new criterion for solutions of the Ginsparg-Wilson Relation constructed with the Wilson action. We conclude that the Neuberger action is the simplest one that maximally complies with the Index Theorem, and that its best parameter in d = 2 is m(0) = 1.1 +/- 0.1.
引用
收藏
页码:130 / 143
页数:14
相关论文
共 50 条
  • [1] REMNANTS OF THE INDEX THEOREM ON THE LATTICE
    SMIT, J
    VINK, JC
    NUCLEAR PHYSICS B, 1987, 286 (02) : 485 - 508
  • [2] Tests of the lattice index theorem
    Jordan, Gerald
    Hoellwieser, Roman
    Faber, Manfried
    Heller, Urs M.
    PHYSICAL REVIEW D, 2008, 77 (01)
  • [3] A Lattice Version of the Atiyah–Singer Index Theorem
    Mayuko Yamashita
    Communications in Mathematical Physics, 2021, 385 : 495 - 520
  • [4] Chiral anomaly and index theorem on a finite lattice
    Chiu, TW
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2000, 83-4 : 612 - 614
  • [5] A numerical test of the continuum index theorem on the lattice
    Narayanan, R
    Vranas, P
    NUCLEAR PHYSICS B, 1997, 506 (1-2) : 373 - 386
  • [6] The index theorem on the lattice with improved fermion actions
    Hernández, P
    NUCLEAR PHYSICS B, 1998, 536 (1-2) : 345 - 362
  • [7] Violations of the Lattice Index Theorem for Spherical Center Vortices
    Hoellwieser, R.
    Faber, M.
    Heller, U. M.
    IX INTERNATIONAL CONFERENCE ON QUARK CONFINEMENT AND THE HADRON SPECTRUM (QCHS IX), 2011, 1343 : 227 - 229
  • [8] Overlap fermions, improved cooling and the lattice index theorem
    Zhang, JB
    Bilson-Thompson, SO
    Bonnet, FDR
    Leinweber, DB
    Williams, AG
    Zanotti, JM
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2002, 109 : 146 - 150
  • [9] A Lattice Version of the Atiyah-Singer Index Theorem
    Yamashita, Mayuko
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 385 (01) : 495 - 520
  • [10] Theoretical Foundation for the Index Theorem on the Lattice with Staggered Fermions
    Adams, David H.
    PHYSICAL REVIEW LETTERS, 2010, 104 (14)