Accelerating Brain Imaging Using a Silent Spatial Encoding Axis

被引:7
|
作者
Versteeg, Edwin [1 ]
Klomp, Dennis W. J. [1 ]
Siero, Jeroen C. W. [1 ,2 ]
机构
[1] Univ Med Ctr Utrecht, Dept Radiol, Room Q02-2-315,HP E 01-132, NL-3584 CX Utrecht, Netherlands
[2] Spinoza Ctr Neuroimaging, Amsterdam, Netherlands
关键词
acceleration; gradient coil; gradient insert; magnetic resonance imaging; parallel imaging; quiet; silent; GRADIENT; MRI; ACQUISITION;
D O I
10.1002/mrm.29350
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose To characterize the acceleration capabilities of a silent head insert gradient axis that operates at the inaudible frequency of 20 kHz and a maximum gradient amplitude of 40 mT/m without inducing peripheral nerve stimulation. Methods The silent gradient axis' acquisitions feature an oscillating gradient in the phase-encoding direction that is played out on top of a cartesian readout, similarly as done in Wave-CAIPI. The additional spatial encoding fills k-space in readout lanes allowing for the acquisition of fewer phase-encoding steps without increasing aliasing artifacts. Fully sampled 2D gradient echo datasets were acquired both with and without the silent readout. All scans were retrospectively undersampled (acceleration factors R = 1 to 12) to compare conventional SENSE acceleration and acceleration using the silent gradient. The silent gradient amplitude and the readout bandwidth were varied to investigate the effect on artifacts and g-factor. Results The silent readout reduced the g-factor for all acceleration factors when compared to SENSE acceleration. Increasing the silent gradient amplitude from 31.5 mT/m to 40 mT/m at an acceleration factor of 10 yielded a reduction in the average g-factor (g(avg)) from 1.3 +/- 0.14 (g(max) = 1.9) to 1.1 +/- 0.09 (g(max) = 1.6)(.) Furthermore, reducing the number of cycles increased the readout bandwidth and the g-factor that reached g(avg) = 1.5 +/- 0.16 for a readout bandwidth of 651 Hz/pixel and an acceleration factor of R = 8. Conclusion A silent gradient axis enables high acceleration factors up to R = 10 while maintaining a g-factor close to unity (g(avg) = 1.1 and g(max) = 1.6) and can be acquired with clinically relevant readout bandwidths.
引用
收藏
页码:1785 / 1793
页数:9
相关论文
共 50 条
  • [1] A silent gradient axis for soundless spatial encoding to enable fast and quiet brain imaging
    Versteeg, Edwin
    Klomp, Dennis W. J.
    Siero, Jeroen C. W.
    MAGNETIC RESONANCE IN MEDICINE, 2022, 87 (02) : 1062 - 1073
  • [2] Spatial encoding using a code division technique for fast ultrasound imaging
    Gran, Fredrik
    Jensen, Jorgen Arendt
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2008, 55 (01) : 12 - 23
  • [3] Accelerating video encoding using cluster computing
    Elkabbany, Ghada F.
    Moussa, Mona M.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (25-26) : 17427 - 17444
  • [4] Accelerating Sensitivity Encoding Using Compressed Sensing
    Liang, Dong
    Liu, Bo
    Ying, Leslie
    2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vols 1-8, 2008, : 1667 - 1670
  • [5] Accelerating video encoding using cluster computing
    Ghada F. Elkabbany
    Mona M. Moussa
    Multimedia Tools and Applications, 2020, 79 : 17427 - 17444
  • [6] Multi-channel data acquisition using multiplexed imaging with spatial encoding
    Horisaki, Ryoichi
    Tanida, Jun
    OPTICS EXPRESS, 2010, 18 (22): : 23041 - 23053
  • [7] Spatial transcriptomics using combinatorial fluorescence spectral and lifetime encoding, imaging and analysis
    Tam Vu
    Alexander Vallmitjana
    Joshua Gu
    Kieu La
    Qi Xu
    Jesus Flores
    Jan Zimak
    Jessica Shiu
    Linzi Hosohama
    Jie Wu
    Christopher Douglas
    Marian L. Waterman
    Anand Ganesan
    Per Niklas Hedde
    Enrico Gratton
    Weian Zhao
    Nature Communications, 13
  • [8] Spatial transcriptomics using combinatorial fluorescence spectral and lifetime encoding, imaging and analysis
    Vu, Tam
    Vallmitjana, Alexander
    Gu, Joshua
    La, Kieu
    Xu, Qi
    Flores, Jesus
    Zimak, Jan
    Shiu, Jessica
    Hosohama, Linzi
    Wu, Jie
    Douglas, Christopher
    Waterman, Marian L.
    Ganesan, Anand
    Hedde, Per Niklas
    Gratton, Enrico
    Zhao, Weian
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [9] Accelerating HEVC Encoding Using Early-Split
    Tang, Minhao
    Chen, Xinyao
    Gu, Jiawen
    Han, Yuxing
    Wen, Jiangtao
    Yang, Shiqiang
    IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (02) : 209 - 213
  • [10] Spatial specificity in spatiotemporal encoding and Fourier imaging
    Goerke, Ute
    MAGNETIC RESONANCE IMAGING, 2016, 34 (04) : 562 - 573