Generalized Newton complementary duals of monomial ideals

被引:0
|
作者
Ansaldi, Katie [1 ]
Lin, Kuei-Nuan [2 ]
Shen, Yi-Huang [3 ]
机构
[1] Wabash Coll, Dept Math & Comp Sci, Crawfordsville, IN 47933 USA
[2] Penn State Greater Allegheny, Dept Math, Mckeesport, PA 15132 USA
[3] Univ Sci & Technol China, Sch Math Sci, CAS, Wu WenTsun Key Lab Math, Hefei 230026, Anhui, Peoples R China
关键词
Free resolution; special fiber; monomial ideal; Ferrers graph; stable ideal; RESOLUTIONS;
D O I
10.1142/S0219498821500213
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a monomial ideal in a polynomial ring over a field, we define the generalized Newton complementary dual of the given ideal. We show good properties of such duals including linear quotients and isomorphism between the special fiber rings. We construct the cellular free resolutions of duals of strongly stable ideals generated in the same degree. When the base ideal is generated in degree two, we provide an explicit description of cellular free resolution of the dual of a compatible generalized stable ideal.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Newton Complementary Duals of f-Ideals
    Budd, Samuel
    Van Tuyl, Adam
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2019, 62 (02): : 231 - 241
  • [2] Complementary decompositions of monomial ideals and involutive bases
    Amir Hashemi
    Matthias Orth
    Werner M. Seiler
    [J]. Applicable Algebra in Engineering, Communication and Computing, 2022, 33 : 791 - 821
  • [3] Complementary decompositions of monomial ideals and involutive bases
    Hashemi, Amir
    Orth, Matthias
    Seiler, Werner M.
    [J]. APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2022, 33 (06) : 791 - 821
  • [4] On the Normality of a Class of Monomial Ideals via the Newton Polyhedron
    Al-Ayyoub, Ibrahim
    Jaradat, Imad
    Al-Zoubi, Khaldoun
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2019, 16 (03)
  • [5] On the Normality of a Class of Monomial Ideals via the Newton Polyhedron
    Ibrahim Al-Ayyoub
    Imad Jaradat
    Khaldoun Al-Zoubi
    [J]. Mediterranean Journal of Mathematics, 2019, 16
  • [6] Generalized Samuel Multiplicities of Monomial Ideals and Volumes
    Achilles, Rudiger
    Manaresi, Mirella
    [J]. EXPERIMENTAL MATHEMATICS, 2022, 31 (02) : 611 - 620
  • [7] Superficial ideals for monomial ideals
    Rajaee, Saeed
    Nasernejad, Mehrdad
    Al-Ayyoub, Ibrahim
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (06)
  • [8] Multiplier ideals of monomial ideals
    Howald, JA
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (07) : 2665 - 2671
  • [9] Monomial ideals
    Shakin D.
    [J]. Journal of Mathematical Sciences, 2007, 142 (4) : 2302 - 2366
  • [10] Monomial ideals via square-free monomial ideals
    Faridi, S
    [J]. Commutative Algebra: Geometric, Homological, Combinatorial and Computational Aspects, 2006, 244 : 85 - 114