Multiscale region segmentation of images using nonlinear methods

被引:1
|
作者
Iyer, BK [1 ]
Macleod, MD [1 ]
机构
[1] Univ Cambridge, Dept Engn, Signal Proc Res Grp, Cambridge CB2 1PZ, England
关键词
region segmentation; datasieve; region adjacency graph (RAG); scale-tree; seed regions; picture tree;
D O I
10.1117/12.386610
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Region segmentation is the process of identifying the regions within an image, where a region is a group of connected pixels with similar properties. In this paper, we present a method of region segmentation using the scale-tree obtained from a datasieve - a recursive non-linear morphological filter. An initial segmentation of the image is done using the scale-tree based region growing method. We show that the properties of the datasieve scale-tree, in conjunction with the scale-tree based region growing method can be used to obtain the features of the objects in the image. The initial segmentation is then followed by post-processing methods for yielding a final segmentation. The results presented for several color images show the methods to be promising.
引用
收藏
页码:1116 / 1125
页数:10
相关论文
共 50 条
  • [1] Multiscale methods for the segmentation of images
    Schneider, MK
    Fieguth, PW
    Karl, WC
    Willsky, AS
    [J]. 1996 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, CONFERENCE PROCEEDINGS, VOLS 1-6, 1996, : 2247 - 2250
  • [2] Multiscale methods for the segmentation and reconstruction of signals and images
    Schneider, MK
    Fieguth, PW
    Karl, WC
    Willsky, AS
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9 (03) : 456 - 468
  • [3] Segmentation of color images using multiscale clustering and graph theoretic region synthesis
    Makrogiannis, S
    Economou, G
    Fotopoulos, S
    Bourbakis, NG
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2005, 35 (02): : 224 - 238
  • [4] Nonlinear multiscale graph theory based segmentation of color images
    Vanhamel, I.
    Sahli, H.
    Pratikakis, I.
    [J]. 18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2006, : 407 - +
  • [5] Segmentation of wood microanatomy images using multiscale classification
    Roncancio, HA
    Velasco, HF
    Herrera, RJ
    [J]. PROCEEDINGS OF THE 3RD IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY, 2003, : 692 - 695
  • [6] Nonlinear Dimension Reduction Methods and Segmentation of Hyperspectral Images
    Bilgin, Goekhan
    Ertuerk, Sarp
    Yildirim, Tueday
    [J]. 2008 IEEE 16TH SIGNAL PROCESSING, COMMUNICATION AND APPLICATIONS CONFERENCE, VOLS 1 AND 2, 2008, : 160 - 163
  • [7] Recursive trust-region methods for multiscale nonlinear optimization
    Gratton, Serge
    Sartenaer, Annick
    Toint, Philippe L.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2008, 19 (01) : 414 - 444
  • [8] Multiscale segmentation of textured sonar images using cooccurrence statistics
    Karoui, I
    Boucher, JA
    Fablet, R
    Augustin, JM
    [J]. ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 1691 - 1694
  • [9] Multiscale segmentation of HRCT images using bipolar incoherent filtering
    Malik, AS
    Choi, TS
    [J]. ADVANCES IN VISUAL COMPUTING, PROCEEDINGS, 2005, 3804 : 76 - 83
  • [10] The registration of MR images using multiscale robust methods
    Alexander, ME
    Somorjai, RL
    [J]. MAGNETIC RESONANCE IMAGING, 1996, 14 (05) : 453 - 468