Remarks on Pressure Blow-Up Criterion of the 3D Zero-Diffusion Boussinesq Equations in Margin Besov Spaces

被引:1
|
作者
Fu, Min [1 ,2 ]
Cai, Chao [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Automat, State Key Lab Multispectral Informat Proc Technol, Wuhan, Peoples R China
[2] Wuhan Inst Technol, Coll Sci, Wuhan, Peoples R China
关键词
NAVIER-STOKES EQUATIONS; IMPROVED REGULARITY CRITERION; QUASI-GEOSTROPHIC EQUATION; SMOOTH SOLUTIONS; VISCOSITY; SYSTEM;
D O I
10.1155/2017/6754780
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This study is focused on the pressure blow-up criterion for a smooth solution of three-dimensional zero-diffusion Boussinesq equations. With the aid of Littlewood-Paley decomposition together with the energy methods, it is proved that if the pressure satisfies the following condition on margin Besov spaces, pi(x,t) epsilon L2/(2+r) (0, T; over dot(B)(r)(infinity,infinity)) for r = perpendicular to 1, then the smooth solution can be continually extended to the interval (0, T*) for some T* > T. The findings extend largely the previous results.
引用
收藏
页数:7
相关论文
共 50 条