System identification of MISO fractional systems: Parameter and differentiation order estimation

被引:13
|
作者
Victor, Stephane [1 ]
Mayoufi, Abir [1 ,2 ]
Malti, Rachid [1 ]
Chetoui, Manel [2 ]
Aoun, Mohamed [2 ]
机构
[1] Univ Bordeaux, CNRS, IMS UMR 5218, 351 Cours Liberat, F-33405 Talence, France
[2] Univ Gabes, ENIG, MACS LR16ES22, Ave Omar Ibn El Khattab, Zrig 6029, Gabes, Tunisia
关键词
System identification; Continuous-time; Instrumental variable; Multiple-input single-output (MISO) system; Order optimization; Fractional model; TIME MODEL IDENTIFICATION; ALGORITHM; DELAY;
D O I
10.1016/j.automatica.2022.110268
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with continuous-time system identification of multiple-input single-output (MISO) fractional differentiation models. When differentiation orders are assumed to be known, coefficients are estimated using the simplified refined instrumental variable method for continuous-time fractional models extended to the MISO case. For unknown differentiation orders, a two-stage optimization algorithm is proposed with the developed instrumental variable for coefficient estimation and a gradient-based algorithm for differentiation order estimation. A new definition of structured-commensurability (or S-commensurability) is introduced to better cope with differentiation order estimation. Three variants of the algorithm are then proposed: (i) first, all differentiation orders are set as integer multiples of a global S-commensurate order, (ii) then, the differentiation orders are set as integer multiples of a local S-commensurate orders (one S-commensurate order for each subsystem), (iii) finally, all differentiation orders are estimated by releasing the S-commensurability constraint. The first variant has the smallest number of parameters and is used as a good initial hit for the second variant which in turn is used as a good initial hit for the third variant. Such a progressive increase of the number of parameters allows better performance of the optimization algorithm evaluated by Monte Carlo simulation analysis. (C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] The Spectral Parameter Estimation Method for Parameter Identification of Linear Fractional Order Systems
    Dabiri, Arman
    Nazari, Morad
    Butcher, Eric A.
    [J]. 2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 2772 - 2777
  • [2] Parameter and differentiation order estimation in fractional models
    Victor, Stephane
    Malti, Rachid
    Garnier, Hugues
    Oustaloup, Alain
    [J]. AUTOMATICA, 2013, 49 (04) : 926 - 935
  • [3] Robust identification of MISO neuro-fractional-order Hammerstein systems
    Rahmani, Mohammad-Reza
    Farrokhi, Mohammad
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2019, 29 (07) : 2137 - 2148
  • [4] Simultaneous state estimation and parameter identification in linear fractional order systems using colouredmeasurement noise
    Safarinejadian, Behrooz
    Asad, Mojtaba
    Sadeghi, Mokhtar Sha
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2016, 89 (11) : 2277 - 2296
  • [5] State estimation-based parameter identification for a class of nonlinear fractional-order systems
    Oliva-Gonzalez, Lorenz Josue
    Martinez-Guerra, Rafael
    [J]. NONLINEAR DYNAMICS, 2024, 112 (08) : 6379 - 6402
  • [6] State estimation-based parameter identification for a class of nonlinear fractional-order systems
    Lorenz Josue Oliva-Gonzalez
    Rafael Martínez-Guerra
    [J]. Nonlinear Dynamics, 2024, 112 : 6379 - 6402
  • [7] An innovative parameter estimation for fractional order systems impulse noise
    Cui, Rongzhi
    Wei, Yiheng
    Cheng, Songsong
    Wang, Yong
    [J]. ISA TRANSACTIONS, 2018, 82 : 120 - 129
  • [8] Recursive System Identification of Continuous-Time Fractional Systems for All Parameter Estimation
    Duhe, Jean-Francois
    Victor, Stephane
    Melchior, Pierre
    Abdelmoumen, Youssef
    Roubertie, Francois
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2024, : 2037 - 2049
  • [9] Parameter identification and synchronization of fractional-order chaotic systems
    Yuan, Li-Guo
    Yang, Qi-Gui
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (01) : 305 - 316
  • [10] Parameter Identification of Fractional-Order Discrete Chaotic Systems
    Peng, Yuexi
    Sun, Kehui
    He, Shaobo
    Peng, Dong
    [J]. ENTROPY, 2019, 21 (01):