Hybrid Decentralized Data Analytics in Edge-Computing-Empowered IoT Networks

被引:6
|
作者
Zhao, Liang [1 ]
Li, Fangyu [2 ]
Valero, Maria [1 ]
机构
[1] Kennesaw State Univ, Dept Informat Technol, Marietta, GA 30060 USA
[2] Kennesaw State Univ, Dept Elect & Comp Engn, Marietta, GA 30067 USA
关键词
Data analytics; decentralized algorithm; edge computing; Internet of Things (IoT); DISTRIBUTED OPTIMIZATION;
D O I
10.1109/JIOT.2020.3040657
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Edge computing is emerging as a new infrastructure for Internet-of-Things (IoT) networks by placing computation and analytics near to where data are generated. This article presents a novel data analytics framework for edge computing. The framework is based on a new decentralized algorithm, which enables all the nodes to obtain the global optimal model without sharing raw data. The resulting scheme executes in a hybrid mode: local IoT nodes send computed information to edge nodes. The edge nodes cooperate with each other by exchanging analytics with their neighbors only. The presenting approach is analyzed and evaluated on various applications and the experimental results demonstrate the effectiveness of the proposed methodology in providing fast data analytics to edge computing infrastructure.
引用
收藏
页码:7706 / 7716
页数:11
相关论文
共 50 条
  • [1] Blockchain and SGX-Enabled Edge-Computing-Empowered Secure IoMT Data Analysis
    Gao, Ying
    Lin, Hongliang
    Chen, Yijian
    Liu, Yangliang
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (21): : 15785 - 15795
  • [2] Learning-Based Context-Aware Resource Allocation for Edge-Computing-Empowered Industrial IoT
    Liao, Haijun
    Zhou, Zhenyu
    Zhao, Xiongwen
    Zhang, Lei
    Mumtaz, Shahid
    Jolfaei, Alireza
    Ahmed, Syed Hassan
    Bashir, Ali Kashif
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (05) : 4260 - 4277
  • [3] Fast Decentralized Data Analytics in IoT Wireless Networks
    Zhao, Liang
    [J]. IEEE ACCESS, 2019, 7 : 181531 - 181545
  • [4] Decentralized Computation Offloading in Mobile Edge Computing Empowered Small-Cell Networks
    Guo, Jun
    Zhang, Heli
    Yang, Lichao
    Ji, Hong
    Li, Xi
    [J]. 2017 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2017,
  • [5] DRL-Based Online Task Offloading and Energy Resource Aggregation for Edge-Computing-Empowered Smart Grid Networks
    Liu, Chuan
    Chen, Lei
    Gao, Wei
    Zhang, Xi
    Peng, Wei
    Shu, Feng
    [J]. IEEE Internet of Things Journal, 2024, 11 (24) : 41008 - 41020
  • [6] An intelligent outlier detection with machine learning empowered big data analytics for mobile edge computing
    Mansour, Romany F.
    Abdel-Khalek, S.
    Hilali-Jaghdam, Ines
    Nebhen, Jamel
    Cho, Woong
    Joshi, Gyanendra Prasad
    [J]. CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2023, 26 (01): : 71 - 83
  • [7] An intelligent outlier detection with machine learning empowered big data analytics for mobile edge computing
    Romany F. Mansour
    S. Abdel-Khalek
    Inès Hilali-Jaghdam
    Jamel Nebhen
    Woong Cho
    Gyanendra Prasad Joshi
    [J]. Cluster Computing, 2023, 26 : 71 - 83
  • [8] Intelligent energy optimization for advanced IoT analytics edge computing on wireless sensor networks
    Agbehadji, Israel Edem
    Frimpong, Samuel Ofori
    Millham, Richard C.
    Fong, Simon James
    Jung, Jason J.
    [J]. INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2020, 16 (07)
  • [9] Fog Computing for Big Data Analytics in IoT Aided Smart Grid Networks
    Md. Muzakkir Hussain
    M. M. Sufyan Beg
    Mohammad Saad Alam
    [J]. Wireless Personal Communications, 2020, 114 : 3395 - 3418
  • [10] Fog Computing for Big Data Analytics in IoT Aided Smart Grid Networks
    Hussain, Md. Muzakkir
    Beg, M. M. Sufyan
    Alam, Mohammad Saad
    [J]. WIRELESS PERSONAL COMMUNICATIONS, 2020, 114 (04) : 3395 - 3418