Perturbation finite element method of structural analysis under fuzzy environments

被引:36
|
作者
Huang, HZ [1 ]
Li, HB
机构
[1] Dalian Univ Technol, Sch Mech Engn, Dalian 116023, Liaoning, Peoples R China
[2] Univ Alberta, Dept Mech Engn, Edmonton, AB T6G 2G8, Canada
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
fuzzy finite element; perturbation method; variational principle; structural analysis;
D O I
10.1016/j.engappai.2004.08.033
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A preliminary analysis of the perturbation fuzzy finite element was provided by Yang et al. (Appl. Math. Mech. 20(7) (1999) 795). in this paper, we provide a detailed analysis of the perturbation fuzzy finite element method based on variational principle. Firstly. on the basis of the second-order perturbation principle of small parameter, the fuzzy functional of total potential energy and the definite perturbation expansions are proposed. Secondly, definite recursion equation of fuzzy variational principle is deduced and fuzzy finite element recursion functional is presented based on fuzzy variational principle. Thirdly, the proposed approach is compared with the conventional fuzzy finite element method. Finally. a numerical example is given to illustrate the method. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:83 / 91
页数:9
相关论文
共 50 条
  • [1] Interval perturbation finite element method for structural static analysis
    [J]. Huang, R. (huangren@ase.buaa.edu.cn), 1600, Tsinghua University (30):
  • [2] Finite element analysis method for fuzzy structures
    Lei, Zhen-Yu
    Chen, Qiu
    [J]. Gongcheng Lixue/Engineering Mechanics, 2001, 18 (06): : 47 - 53
  • [3] Perturbation based Stochastic finite element analysis of the structural systems with composite sections under earthquake forces
    Cavdar, Oezlem
    Bayraktar, Alemdar
    Cavdar, Ahmet
    Adanur, Sueleyman
    [J]. STEEL AND COMPOSITE STRUCTURES, 2008, 8 (02): : 129 - 144
  • [4] Inverse perturbation solution method based on the finite element analysis of plane beam element
    Miao, Y.B.
    Teng, H.F.
    Ding, J.H.
    Qu, F.Z.
    [J]. Jisuan Lixue Xuebao/Chinese Journal of Computational Mechanics, 2001, 18 (01):
  • [5] Perturbation method for probabilistic dynamic finite element analysis of a rectangular plate
    Chang, TP
    Chang, HC
    [J]. MECHANICS OF STRUCTURES AND MACHINES, 1997, 25 (04): : 397 - 415
  • [6] Electrostatic Analysis of Moving Conductors Using a Perturbation Finite Element Method
    Boutaayamou, Mohamed
    Sabariego, Ruth V.
    Dular, Patrick
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2009, 45 (03) : 1004 - 1007
  • [7] PERIODIC TIDAL FLOW ANALYSIS BY FINITE-ELEMENT PERTURBATION METHOD
    KAWAHARA, M
    HASEGAWA, K
    KAWANAGO, Y
    [J]. COMPUTERS & FLUIDS, 1977, 5 (04) : 175 - 189
  • [8] A relative method for finite element nonlinear structural analysis
    Choi, J
    Bae, D
    Cho, HJ
    [J]. PROGRESS ON ADVANCED MANUFACTURE FOR MICRO/NANO TECHNOLOGY 2005, PT 1 AND 2, 2006, 505-507 : 577 - 582
  • [9] Structural Reliability Analysis UsingFuzzy Finite Element Method
    Yusmye, A. Y. N.
    Goh, B. Y.
    Ariffin, A. K.
    [J]. NOISE, VIBRATION AND COMFORT, 2014, 471 : 306 - 312
  • [10] HIERARCHICAL STOCHASTIC FINITE ELEMENT METHOD FOR STRUCTURAL ANALYSIS
    Lufeng Yang
    Yue’e Zhou
    Jingjing Zhou
    Meilan Wang
    [J]. Acta Mechanica Solida Sinica, 2013, 26 (02) : 189 - 196