Debye-Einstein model and anomalies of heat capacity temperature dependences of solid solutions at low temperatures

被引:9
|
作者
Novikov, V. V. [1 ]
机构
[1] Petrovsky Bryansk State Univ, 14 Bezhitskaya Str, Bryansk 241036, Russia
基金
俄罗斯基础研究基金会;
关键词
Heat capacity; Solid solutions; Kopp-Neumann rule; Debye-Einstein model; NEGATIVE THERMAL-EXPANSION; MAGNETIC PHASE-TRANSITION; SINGLE-CRYSTALS; THERMODYNAMIC FUNCTIONS; (INP)X(INAS)1-X; CONDUCTIVITY; PECULIARITIES; DYNAMICS; FEATURES; BORIDE;
D O I
10.1007/s10973-019-08124-9
中图分类号
O414.1 [热力学];
学科分类号
摘要
An approach is proposed for analysing the deviations of the heat capacity C-p(T) of solid solutions from the Kopp-Neumann rule (KNR) Delta DC(T) = C-p(T) - C-KNR(T). Temperature dependences of the heat capacity C-p(T) of selected compositions of systems (InP)(x) (InAs)(1-x) and (GaAs)(x) (InAs)(1-x) at temperatures of 5-300 K are analysed in the Debye-Einstein approximation. It was established that in the case of substitution of atoms in the cation subsystem (Ga3+ <-> In3+) with the same subsystem of anions (As3-), the positive values of Delta DC(T) at T < 100 K are due to the appearance of the lowfrequency Einstein mode, whereas the negative values of Delta DC(T) at T > 100 K are the result of a decrease in the fraction of the Debye contribution without changing the upper limit of the oscillation frequency. In the case of substitution in the cation subsystem (P3- <-> As3-) with the invariant cation subsystem (In3+) to the low-temperature positive contribution of the additional low-frequency Einstein mode, a positive part is added from the modified Debye mode having the characteristic temperature theta(D) below the additive value theta(DKNR). The adequacy of this model is confirmed by Raman scattering data.
引用
收藏
页码:265 / 272
页数:8
相关论文
共 50 条
  • [1] Debye–Einstein model and anomalies of heat capacity temperature dependences of solid solutions at low temperatures
    V. V. Novikov
    [J]. Journal of Thermal Analysis and Calorimetry, 2019, 138 : 265 - 272
  • [2] Extended Regression Analysis for Debye-Einstein Models Describing Low Temperature Heat Capacity Data of Solids
    Gamsjaeger, Ernst
    Wiessner, Manfred
    [J]. ENTROPY, 2024, 26 (06)
  • [3] Low temperature heat capacities and thermodynamic functions described by Debye-Einstein integrals
    Gamsjaeger, Ernst
    Wiessner, Manfred
    [J]. MONATSHEFTE FUR CHEMIE, 2018, 149 (02): : 357 - 368
  • [4] Theoretical Investigation for Interpreting Heat Capacity of Thermoelectric Materials Using Debye-Einstein Approximation
    Copuroglu, E.
    Ozgul, D.
    [J]. RUSSIAN PHYSICS JOURNAL, 2024, 67 (07) : 1073 - 1081
  • [5] THE DEBYE-WALLER FACTOR FOR POLYATOMIC SOLIDS - RELATIONSHIPS BETWEEN X-RAY AND SPECIFIC-HEAT DEBYE TEMPERATURES - THE DEBYE-EINSTEIN MODEL
    HORNING, RD
    STAUDENMANN, JL
    [J]. ACTA CRYSTALLOGRAPHICA SECTION A, 1988, 44 : 136 - 142
  • [6] The Concentration Dependences of Lattice Parameters and Debye Temperature in Multicomponent Solid Solutions
    Protsenko, I. Yu.
    Shumakova, M. O.
    Rylova, A. K.
    Shumakova, N. I.
    [J]. METALLOPHYSICS AND ADVANCED TECHNOLOGIES, 2023, 45 (07)
  • [7] Specific heat capacity and Debye temperature of zirconia and its solid solution
    Degueldre, C
    Tissot, P
    Lartigue, H
    Pouchon, M
    [J]. THERMOCHIMICA ACTA, 2003, 403 (02) : 267 - 273
  • [8] The revision on heat capacity of Einstein’s solid model
    王爱坤
    周国香
    李国昌
    薛建华
    [J]. Journal of Harbin Institute of Technology(New series), 2005, (03) : 325 - 327
  • [9] Low temperature heat capacities and thermodynamic functions described by Debye–Einstein integrals
    Ernst Gamsjäger
    Manfred Wiessner
    [J]. Monatshefte für Chemie - Chemical Monthly, 2018, 149 : 357 - 368
  • [10] TEMPERATURE AND CONCENTRATION DEPENDENCES OF HEAT-CAPACITY OF (BA, SR) TIO3 SOLID-SOLUTIONS
    BORMAN, KY
    FRITSBERG, VY
    [J]. IZVESTIYA AKADEMII NAUK SSSR SERIYA FIZICHESKAYA, 1975, 39 (06): : 1336 - 1339