Session-Based Fraud Detection in Online E-Commerce Transactions Using Recurrent Neural Networks

被引:42
|
作者
Wang, Shuhao [1 ]
Liu, Cancheng [2 ]
Gao, Xiang [2 ]
Qu, Hongtao [2 ]
Xu, Wei [1 ]
机构
[1] Tsinghua Univ, Beijing 100084, Peoples R China
[2] JD Finance, Beijing 100176, Peoples R China
基金
中国国家自然科学基金;
关键词
Fraud detection; Web mining; Recurrent neural network; SYSTEM; RISK;
D O I
10.1007/978-3-319-71273-4_20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Transaction frauds impose serious threats onto e-commerce. We present CLUE, a novel deep-learning-based transaction fraud detection system we design and deploy at JD.com, one of the largest e-commerce platforms in China with over 220 million active users. CLUE captures detailed information on users' click actions using neural-network based embedding, and models sequences of such clicks using the recurrent neural network. Furthermore, CLUE provides application-specific design optimizations including imbalanced learning, real-time detection, and incremental model update. Using real production data for over eight months, we show that CLUE achieves over 3x improvement over the existing fraud detection approaches.
引用
收藏
页码:241 / 252
页数:12
相关论文
共 50 条
  • [1] Automatic Fraud Detection in e-Commerce Transactions using Deep Reinforcement Learning and Artificial Neural Networks
    Tang, Yuanyuan
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (07) : 1047 - 1058
  • [2] Improved Fraud Detection in e-Commerce Transactions
    Shaji, Jisha
    Panchal, Dakshata
    [J]. 2017 2ND INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS, COMPUTING AND IT APPLICATIONS (CSCITA), 2017, : 121 - 126
  • [3] Fraud risks in e-commerce transactions
    Wopperer, W
    [J]. GENEVA PAPERS ON RISK AND INSURANCE-ISSUES AND PRACTICE, 2002, 27 (03): : 383 - 394
  • [4] A Scalable Approach for Fraud Detection in Online E-Commerce Transactions with Big Data Analytics
    Zhou, Hangjun
    Sun, Guang
    Fu, Sha
    Jiang, Wangdong
    Xue, Juan
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2019, 60 (01): : 179 - 192
  • [5] A Flexible Session-Based Recommender System for e-Commerce
    Salampasis, Michail
    Katsalis, Alkiviadis
    Siomos, Theodosios
    Delianidi, Marina
    Tektonidis, Dimitrios
    Christantonis, Konstantinos
    Kaplanoglou, Pantelis
    Karaveli, Ifigeneia
    Bourlis, Chrysostomos
    Diamantaras, Konstantinos
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (05):
  • [6] Fraud Detection in E-commerce Transactions: A Machine Learning Perspective
    Manoharan, Geetha
    Ali, S. Dada Noor Hayath
    Sathe, Manoj
    Karthik, A.
    Nagpal, Amandeep
    Sidana, Ajay
    [J]. 2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,
  • [7] A Multiperspective Fraud Detection Method for Multiparticipant E-Commerce Transactions
    Yu, Wangyang
    Wang, Yadi
    Liu, Lu
    An, Yisheng
    Yuan, Bo
    Panneerselvam, John
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, 11 (02): : 1564 - 1576
  • [8] Detection of e-Commerce Anomalies using LSTM-recurrent Neural Networks
    Bozbura, Merih
    Tunc, Hunkar C.
    Kusak, Miray Endican
    Sakar, C. Okan
    [J]. PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON DATA SCIENCE, TECHNOLOGY AND APPLICATIONS (DATA), 2019, : 217 - 224
  • [9] Keywords Generation Improves E-Commerce Session-based Recommendation
    Liu, Yuanxing
    Ren, Zhaochun
    Zhang, Wei-Nan
    Che, Wanxiang
    Liu, Ting
    Yin, Dawei
    [J]. WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, : 1604 - 1614
  • [10] Fraud Analysis and Prevention in e-Commerce Transactions
    Caldeira, Evandro
    Brandao, Gabriel
    Pereira, Adriano C. M.
    [J]. 2014 9TH LATIN AMERICAN WEB CONGRESS (LA-WEB), 2014, : 42 - 49