Polynomial Interpolation of the k-th Root of the Discrete Logarithm

被引:0
|
作者
Meletiou, Gerasimos C. [1 ]
机构
[1] ATEI Epirus, Arta 47100, Greece
来源
ALGEBRAIC INFORMATICS | 2009年 / 5725卷
关键词
GROUP SIGNATURES; REPRESENTATIONS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the present study the problem of efficient; computation of the k-th root of the Discrete Logarithm is investigated. Lower bounds on the degree of interpolation polynomials of the root of the Discrete Logarithm for subsets of given data are obtained. These results support the assumption of hardness of the k-th root of the discrete logarithm.
引用
收藏
页码:318 / 323
页数:6
相关论文
共 50 条
  • [1] Polynomial interpolation of the discrete logarithm
    Winterhof, A
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2002, 25 (01) : 63 - 72
  • [2] Polynomial Interpolation of the Discrete Logarithm
    Arne Winterhof
    [J]. Designs, Codes and Cryptography, 2002, 25 : 63 - 72
  • [3] Incomplete character sums and polynomial interpolation of the discrete logarithm
    Niederreiter, H
    Winterhof, A
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2002, 8 (02) : 184 - 192
  • [4] ON THE K-TH ROOT IN CIRCULAR ARITHMETIC
    PETKOVIC, L
    PETKOVIC, M
    [J]. COMPUTING, 1984, 33 (01) : 27 - 35
  • [5] On the computation of the matrix k-th root
    Lakic, S
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1998, 78 (03): : 167 - 172
  • [6] Interpolation of the double discrete logarithm
    Meletiou, Gerasimos C.
    Winterhof, Arne
    [J]. ARITHMETIC OF FINITE FIELDS, PROCEEDINGS, 2008, 5130 : 1 - 10
  • [7] The k-th Roman domination problem is polynomial on interval graphs
    Li, Peng
    [J]. Journal of Combinatorial Optimization, 2024, 48 (03)
  • [8] Accurate evaluation of the k-th derivative of a polynomial and its application
    Jiang, Hao
    Graillat, Stef
    Hu, Canbin
    Li, Shengguo
    Liao, Xiangke
    Cheng, Lizhi
    Su, Fang
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 243 : 28 - 47
  • [9] BOUNDS FOR THE EXPECTATION OF THE K-TH ROOT OF A RANDOM VARIABLE
    BOWMAN, KO
    LAM, HK
    SHENTON, LR
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1984, 10 (02) : 229 - 244
  • [10] Approximation to the k-th derivatives by multiquadric quasi-interpolation method
    Ma, Limin
    Wu, Zongmin
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 231 (02) : 925 - 932