Forecasting air quality parameters using hybrid neural network modelling

被引:40
|
作者
Kolehmainen, M [1 ]
Martikainen, H [1 ]
Hiltunen, T [1 ]
Ruuskanen, J [1 ]
机构
[1] Univ Kuopio, Dept Environm Sci, FIN-70211 Kuopio, Finland
关键词
air quality; forecasting; neural networks; Self-Organizing Map; Sammon's mapping;
D O I
10.1023/A:1006498914708
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Urban air pollution has emerged as an acute problem in recent years because of its detrimental effects on health and living conditions. The research presented here aims at attaining a better understanding of phenomena associated with atmospheric pollution, and in particular with aerosol particles. The specific goal was to develop a form of air quality modelling which can forecast urban air quality for the next day using airborne pollutant, meteorological and timing variables. Hourly airborne pollutant and meteorological averages collected during the years 1995-1997 were analysed in order to identify air quality episodes having typical and the most probable combinations of air pollutant and meteorological variables. This modelling was done using the Self-Organising Map (SOM) algorithm, Sammon's mapping and fuzzy distance metrics. The clusters of data that were found were characterised by statistics. Several overlapping Multi-Layer Perceptron (MLP) models were then applied to the clustered data, each of which represented one pollution episode. The actual levels for individual pollutants could then be calculated using a combination of the MLP models which were appropriate in that situation. The analysis phase of the modelling gave clear and intuitive results regarding air quality in the area where the data had been collected. The resulting forecast showed that the modelling of gaseous pollutants is more reliable than that of the particles.
引用
下载
收藏
页码:277 / 286
页数:10
相关论文
共 50 条
  • [1] Forecasting Air Quality Parameters Using Hybrid Neural Network Modelling
    Mikko Kolehmainen
    Hannu Martikainen
    Teri Hiltunen
    Juhani Ruuskanen
    Environmental Monitoring and Assessment, 2000, 65 : 277 - 286
  • [2] Forecasting of Air Quality Using an Optimized Recurrent Neural Network
    Waseem, Khawaja Hassan
    Mushtaq, Hammad
    Abid, Fazeel
    Abu-Mahfouz, Adnan M.
    Shaikh, Asadullah
    Turan, Mehmet
    Rasheed, Jawad
    PROCESSES, 2022, 10 (10)
  • [3] Air Quality Assessment and Forecasting Using Neural Network Model
    Hamdan, Mohammad A.
    Ata, Mohammad F. Bani
    Sakhrieh, Ahmad H.
    JOURNAL OF ECOLOGICAL ENGINEERING, 2021, 22 (06): : 1 - 11
  • [4] Modelling urban air quality using artificial neural network
    Nagendra S.M.S.
    Khare M.
    Clean Technologies and Environmental Policy, 2005, 7 (2) : 116 - 126
  • [5] Aquaculture 4.0: hybrid neural network multivariate water quality parameters forecasting model
    Elias Eze
    Sam Kirby
    John Attridge
    Tahmina Ajmal
    Scientific Reports, 13
  • [6] Aquaculture 4.0: hybrid neural network multivariate water quality parameters forecasting model
    Eze, Elias
    Kirby, Sam
    Attridge, John
    Ajmal, Tahmina
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [7] Meteorology-based forecasting of air quality index using neural network
    Sharma, M
    Aggarwal, S
    Bose, P
    Deshpande, A
    INDIN 2003: IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS, PROCEEDINGS, 2003, : 374 - 378
  • [8] Air Quality Forecasting using Neural Networks
    Zhao, Chen
    van Heeswijk, Mark
    Karhunen, Juha
    PROCEEDINGS OF 2016 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2016,
  • [9] Forecasting water quality parameters using artificial neural network for irrigation purposes
    J. I. Ubah
    L. C. Orakwe
    K. N. Ogbu
    J. I. Awu
    I. E. Ahaneku
    E. C. Chukwuma
    Scientific Reports, 11
  • [10] Forecasting water quality parameters using artificial neural network for irrigation purposes
    Ubah, J., I
    Orakwe, L. C.
    Ogbu, K. N.
    Awu, J., I
    Ahaneku, I. E.
    Chukwuma, E. C.
    SCIENTIFIC REPORTS, 2021, 11 (01)