Multidimensional reaction rate theory with anisotropic diffusion

被引:18
|
作者
Berezhkovskii, Alexander M. [1 ]
Szabo, Attila [2 ]
Greives, Nicholas [3 ,4 ]
Zhou, Huan-Xiang [3 ,4 ]
机构
[1] NIH, Math & Stat Comp Lab, Div Computat Biosci, Ctr Informat Technol, Bethesda, MD 20819 USA
[2] NIDDK, Lab Chem Phys, NIH, Bethesda, MD 20819 USA
[3] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA
[4] Florida State Univ, Inst Mol Biophys, Tallahassee, FL 32306 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2014年 / 141卷 / 20期
基金
美国国家卫生研究院;
关键词
ACTIVATED RATE-PROCESSES; CHEMICAL-REACTIONS; METASTABLE STATE; KRAMERS PROBLEM; POLAR-SOLVENTS; DECAY; SOLVATION; FRICTION; COMPLEX; MOTION;
D O I
10.1063/1.4902243
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An analytical expression is derived for the rate constant that describes diffusive transitions between two deep wells of a multidimensional potential. The expression, in contrast to the Kramers-Langer formula for the rate constant, is valid even when the diffusion is highly anisotropic. Our approach is based on a variational principle for the reactive flux and uses a trial function for the splitting probability or commitor. The theoretical result is validated by Brownian dynamics simulations. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:6
相关论文
共 50 条