Attention-Enhanced Graph Convolutional Networks for Aspect-Based Sentiment Classification with Multi-Head Attention

被引:13
|
作者
Xu, Guangtao [1 ]
Liu, Peiyu [1 ]
Zhu, Zhenfang [2 ]
Liu, Jie [1 ]
Xu, Fuyong [1 ]
机构
[1] Shandong Normal Univ, Sch Informat Sci & Engn, Jinan 250358, Peoples R China
[2] Shandong Jiaotong Univ, Sch Informat Sci & Elect Engn, Jinan 250357, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 08期
关键词
aspect-based sentiment classification; attention mechanism; multi-head attention; graph convolutional network;
D O I
10.3390/app11083640
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The purpose of aspect-based sentiment classification is to identify the sentiment polarity of each aspect in a sentence. Recently, due to the introduction of Graph Convolutional Networks (GCN), more and more studies have used sentence structure information to establish the connection between aspects and opinion words. However, the accuracy of these methods is limited by noise information and dependency tree parsing performance. To solve this problem, we proposed an attention-enhanced graph convolutional network (AEGCN) for aspect-based sentiment classification with multi-head attention (MHA). Our proposed method can better combine semantic and syntactic information by introducing MHA and GCN. We also added an attention mechanism to GCN to enhance its performance. In order to verify the effectiveness of our proposed method, we conducted a lot of experiments on five benchmark datasets. The experimental results show that our proposed method can make more reasonable use of semantic and syntactic information, and further improve the performance of GCN.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Multi-head self-attention based gated graph convolutional networks for aspect-based sentiment classification
    Luwei Xiao
    Xiaohui Hu
    Yinong Chen
    Yun Xue
    Bingliang Chen
    Donghong Gu
    Bixia Tang
    [J]. Multimedia Tools and Applications, 2022, 81 : 19051 - 19070
  • [2] Multi-head self-attention based gated graph convolutional networks for aspect-based sentiment classification
    Xiao, Luwei
    Hu, Xiaohui
    Chen, Yinong
    Xue, Yun
    Chen, Bingliang
    Gu, Donghong
    Tang, Bixia
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (14) : 19051 - 19070
  • [3] Affective-Knowledge-Enhanced Graph Convolutional Networks for Aspect-Based Sentiment Analysis with Multi-Head Attention
    Cui, Xiaodong
    Tao, Wenbiao
    Cui, Xiaohui
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (07):
  • [4] Graph Convolutional Networks with Bidirectional Attention for Aspect-Based Sentiment Classification
    Liu, Jie
    Liu, Peiyu
    Zhu, Zhenfang
    Li, Xiaowen
    Xu, Guangtao
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (04): : 1 - 15
  • [5] Graph convolutional networks with hierarchical multi-head attention for aspect-level sentiment classification
    Li, Xiaowen
    Lu, Ran
    Liu, Peiyu
    Zhu, Zhenfang
    [J]. JOURNAL OF SUPERCOMPUTING, 2022, 78 (13): : 14846 - 14865
  • [6] Graph convolutional networks with hierarchical multi-head attention for aspect-level sentiment classification
    Xiaowen Li
    Ran Lu
    Peiyu Liu
    Zhenfang Zhu
    [J]. The Journal of Supercomputing, 2022, 78 : 14846 - 14865
  • [7] GRAPH ATTENTION NETWORKS WITH STRUCTURAL ATTENTION MECHANISM FOR ASPECT-BASED SENTIMENT CLASSIFICATION
    Li, Xiaowen
    Lu, Ran
    Liu, Peiyu
    Zhu, Zhengfang
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2021, 22 (09) : 1805 - 1819
  • [8] Multi-Head Self-Attention Transformation Networks for Aspect-Based Sentiment Analysis
    Lin, Yuming
    Wang, Chaoqiang
    Song, Hao
    Li, You
    [J]. IEEE ACCESS, 2021, 9 : 8762 - 8770
  • [9] Deep Multi-Head Attention Network for Aspect-Based Sentiment Analysis
    Yan, Danfeng
    Chen, Jiyuan
    Cui, Jianfei
    Shan, Ao
    Shi, Wenting
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 695 - 700
  • [10] Convolutional multi-head self-attention on memory for aspect sentiment classification
    Zhang, Yaojie
    Xu, Bing
    Zhao, Tiejun
    [J]. IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2020, 7 (04) : 1038 - 1044