Linear Canonical Wavelet Transform in Quaternion Domains

被引:10
|
作者
Shah, Firdous A. [1 ]
Teali, Aajaz A. [1 ]
Tantary, Azhar Y. [1 ]
机构
[1] Dept Math, Univ Kashmir South Campus, Anantnag 192101, Jammu & Kashmir, India
关键词
Wavelet transform; Linear canonical transform; Uncertainty principles; Quaternion Fourier transform;
D O I
10.1007/s00006-021-01142-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The well-known quaternion algebra is a four-dimensional natural extension of the field of complex numbers and plays a significant role in various aspects of signal processing, particularly for representing signals wherein several instincts are to be controlled simultaneously. For efficient analysis of such quaternionic signals, we introduce the notion of linear canonical wavelet transform in quaternion domain by invoking the elegant convolution structure associated with the quaternion linear canonical transform. The preliminary analysis encompasses the study of fundamental properties of the proposed linear canonical wavelet transform in quaternion domain including the Rayleigh's theorem, inversion formula and a characterization of the range. Subsequently, we formulate three uncertainty principles; viz, Heisenberg-type, logarithmic and local uncertainty inequalities associated with the linear canonical wavelet transform in quaternion domain.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Linear Canonical Wavelet Transform in Quaternion Domains
    Firdous A. Shah
    Aajaz A. Teali
    Azhar Y. Tantary
    [J]. Advances in Applied Clifford Algebras, 2021, 31
  • [2] INTRODUCTION TO QUATERNION LINEAR CANONICAL TRANSFORM
    Gudadhe, Alka S.
    Thakare, Pranay P.
    [J]. JOURNAL OF SCIENCE AND ARTS, 2014, (01): : 45 - 52
  • [3] Discrete quaternion linear canonical transform
    Urynbassarova, Didar
    Teali, Aajaz A.
    Zhang, Feng
    [J]. DIGITAL SIGNAL PROCESSING, 2022, 122
  • [4] Spectrum of quaternion signals associated with quaternion linear canonical transform
    Prasad, Akhilesh
    Kundu, Manab
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2024, 361 (02): : 764 - 775
  • [5] Jackson Theorems for the Quaternion Linear Canonical transform
    A. Achak
    O. Ahmad
    A. Belkhadir
    R. Daher
    [J]. Advances in Applied Clifford Algebras, 2022, 32
  • [6] Uncertainty Principles for The Quaternion Linear Canonical Transform
    A. Achak
    A. Abouelaz
    R. Daher
    N. Safouane
    [J]. Advances in Applied Clifford Algebras, 2019, 29
  • [7] Uncertainty Principles for The Quaternion Linear Canonical Transform
    Achak, A.
    Abouelaz, A.
    Daher, R.
    Safouane, N.
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2019, 29 (05)
  • [8] Jackson Theorems for the Quaternion Linear Canonical transform
    Achak, A.
    Ahmad, O.
    Belkhadir, A.
    Daher, R.
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2022, 32 (03)
  • [9] A Variation on Uncertainty Principles for Quaternion Linear Canonical Transform
    Khaled Hleili
    [J]. Advances in Applied Clifford Algebras, 2021, 31
  • [10] Dini–Lipschitz functions for the quaternion linear canonical transform
    A. Bouhlal
    A. Achak
    R. Daher
    N. Safouane
    [J]. Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 70 : 199 - 215