Shadowing by non-uniformly hyperbolic periodic points and uniform hyperbolicity

被引:9
|
作者
Castro, Armando
Oliveira, Krerley
Pinheiro, Vilton
机构
[1] Univ Fed Bahia, Dept Matemat, BR-40170110 Salvador, BA, Brazil
[2] Univ Fed Alagoas, Dept Matemat, Maceio, Brazil
关键词
D O I
10.1088/0951-7715/20/1/005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that, under a mild condition on the hyperbolicity of its periodic points, a map g which is topologically conjugated to a hyperbolic map (respectively, an expanding map) is also a hyperbolic map (respectively, an expanding map). In particular, this result gives a partial positive answer for a question asked by A Katok, in a related context.
引用
收藏
页码:75 / 85
页数:11
相关论文
共 50 条
  • [1] Non-uniformly hyperbolic periodic points and uniform hyperbolicity for C1 diffeomorphisms
    Sun, Wenxiang
    Tian, Xueting
    NONLINEARITY, 2010, 23 (05) : 1235 - 1244
  • [2] AVERAGE SHADOWING PROPERTY WITH NON UNIFORMLY HYPERBOLICITY ON PERIODIC POINTS
    Bahabadi, Alireza Zamani
    JOURNAL OF DYNAMICAL SYSTEMS AND GEOMETRIC THEORIES, 2014, 12 (01) : 11 - 17
  • [3] Non-uniformly hyperbolic flows and shadowing
    Sun, Wenxiang
    Tian, Xueting
    Vargas, Edson
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (01) : 218 - 235
  • [4] The set of points with Markovian symbolic dynamics for non-uniformly hyperbolic diffeomorphisms
    Ben Ovadia, Snir
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2021, 41 (11) : 3244 - 3269
  • [5] Non-uniformly hyperbolic horseshoes in the standard family
    Matheus, Carlos
    Moreira, Carlos Gustavo
    Palis, Jacob
    COMPTES RENDUS MATHEMATIQUE, 2018, 356 (02) : 146 - 149
  • [6] Multifractal analysis of non-uniformly hyperbolic systems
    Anders Johansson
    Thomas M. Jordan
    Anders Öberg
    Mark Pollicott
    Israel Journal of Mathematics, 2010, 177 : 125 - 144
  • [7] Mixing for Some Non-Uniformly Hyperbolic Systems
    Liverani, Carlangelo
    Terhesiu, Dalia
    ANNALES HENRI POINCARE, 2016, 17 (01): : 179 - 226
  • [8] Building Thermodynamics for Non-uniformly Hyperbolic Maps
    Climenhaga V.
    Pesin Y.
    Arnold Mathematical Journal, 2017, 3 (1) : 37 - 82
  • [9] Mixing for Some Non-Uniformly Hyperbolic Systems
    Carlangelo Liverani
    Dalia Terhesiu
    Annales Henri Poincaré, 2016, 17 : 179 - 226
  • [10] A criterion for ergodicity for non-uniformly hyperbolic diffeomorphisms
    Hertz, F. Rodriguez
    Hertz, M. A. Rodriguez
    Tahzibi, A.
    Ures, R.
    ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES, 2007, 14 : 74 - 81