Variational autoencoders for anomaly detection in the behaviour of the elderly using electricity consumption data

被引:8
|
作者
Gonzalez, Daniel [1 ]
Patricio, Miguel A. [2 ]
Berlanga, Antonio [2 ]
Molina, Jose M. [2 ]
机构
[1] Grp MasMovil, Engn Team, Madrid, Spain
[2] Univ Carlos III Madrid, Grp Inteligencia Artificial Aplicada, Madrid, Spain
关键词
ambient assisted living; anomaly detection; SMART HOMES;
D O I
10.1111/exsy.12744
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
According to the World Health Organization, between 2000 and 2050, the proportion of the world's population over 60 will double, from 11% to 22%. In absolute numbers, this age group will increase from 605 million to 2 billion in the course of half a century. It is a reality that most of them prefer to live alone, so it is necessary to look for mechanisms and tools that will help them to improve their autonomy. Although in recent years, we have been living in a veritable explosion of domotic systems that facilitate people's daily lives, it is also true that there are not many tools specifically aimed at this sector of the population. The aim of this paper is to present a potential solution to the monitoring of activity of daily living in the least intrusive way for people. In this case, anomalous patterns of daily activities will be detected by analysing the daily consumption of household appliances. People who live alone usually have a pattern of daily behaviour in the use of household appliances (coffee machine, microwave, television, etc.). A neuronal model is proposed for the detection of abnormal behaviour based on an autoencoder architecture. This solution will be compared with a variational autoencoder to analyse the improvements that can be obtained. The well-known dataset called UK-DALE will be used to validate the proposal.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Variational Autoencoders for Anomaly Detection and Transfer Knowledge in Electricity and District Heating Consumption
    Shahid, Zahraa Khais
    Saguna, Saguna
    Ahlund, Christer
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2024, 60 (05) : 7437 - 7450
  • [2] Smart Meter Data Anomaly Detection Using Variational Recurrent Autoencoders with Attention
    Dai, Wenjing
    Liu, Xiufeng
    Heller, Alfred
    Nielsen, Per Sieverts
    INTELLIGENT TECHNOLOGIES AND APPLICATIONS, 2022, 1616 : 311 - 324
  • [3] Anomaly Detection of Disconnects Using SSTDR and Variational Autoencoders
    Edun, Ayobami S.
    LaFlamme, Cody
    Kingston, Samuel R.
    Furse, Cynthia M.
    Scarpulla, Michael A.
    Harley, Joel B.
    IEEE SENSORS JOURNAL, 2022, 22 (04) : 3484 - 3492
  • [4] An empirical evaluation of deep autoencoders for anomaly detection in the electricity consumption of buildings
    Azzalini, Davide
    Flammini, Benedetta
    Guadagno, Antonio
    Ragaini, Enrico
    Amigoni, Francesco
    ENERGY AND BUILDINGS, 2025, 327
  • [5] Anomaly Detection in Electricity Consumption Data using Deep Learning
    Kardi, Mohammad
    AlSkaif, Tarek
    Tekinerdogan, Bedir
    Catalao, Joao P. S.
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2021 5TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC/I&CPS EUROPE), 2021,
  • [6] Anomaly Detection and Visualization for Electricity Consumption Data
    Lee, Nyoungwoo
    Nam, Jehyun
    Choi, Ho-Jin
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2020), 2020, : 743 - 749
  • [7] Anomaly Detection in 5G using Variational Autoencoders
    Islam, Amanul
    Chang, Sang-Yoon
    Kim, Jinoh
    Kim, Jonghyun
    2024 SILICON VALLEY CYBERSECURITY CONFERENCE, SVCC 2024, 2024,
  • [8] Anomaly Detection in Industrial Software Systems Using Variational Autoencoders
    Kumarage, Tharindu
    De Silva, Nadun
    Ranawaka, Malsha
    Kuruppu, Chamal
    Ranathunga, Surangika
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS (ICPRAM 2018), 2018, : 440 - 447
  • [9] Improving Data Generalization With Variational Autoencoders for Network Traffic Anomaly Detection
    Monshizadeh, Mehrnoosh
    Khatri, Vikramajeet
    Gamdou, Marah
    Kantola, Raimo
    Yan, Zheng
    IEEE ACCESS, 2021, 9 : 56893 - 56907
  • [10] Variational Autoencoders for Anomaly Detection in Respiratory Sounds
    Cozzatti, Michele
    Simonetta, Federico
    Ntalampiras, Stavros
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT IV, 2022, 13532 : 333 - 345