Note on the energy of regular graphs

被引:11
|
作者
Li, Xueliang [1 ]
Li, Yiyang
Shi, Yongtang
机构
[1] Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
关键词
Graph energy; Regular graph; Paley graph; Open problem;
D O I
10.1016/j.laa.2009.10.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a simple graph G, the energy epsilon(G) is defined as the sum of the absolute values of all the eigenvalues of its adjacency matrix A(G). Let n, m, respectively, be the number of vertices and edges of G. One well-known inequality is that epsilon(G) <= lambda(1) + root(n - 1)(2m - lambda(1)), where lambda(1) is the spectral radius. If G is k-regular, we have epsilon (G) <= k + root k(n - 1)(n - k). Denote epsilon(0) = k + root k(n - 1)(n - k). Balakrishnan [R. Balakrishnan, The energy of a graph, Linear Algebra Appl. 387 (2004) 287-295] proved that for each epsilon > 0, there exist infinitely many n for each of which there exists a k-regular graph G of order n with k < n - 1 and epsilon(G)/epsilon(0) < epsilon, and proposed an open problem that, given a positive integer n >= 3, and epsilon > 0, does there exist a k-regular graph G of order n such that epsilon(G)/epsilon(0) > 1 - epsilon. In this paper, we show that for each epsilon > 0, there exist infinitely many such n that epsilon(G)/epsilon(0) > 1 - epsilon. Moreover, we construct another class of simpler graphs which also supports the first assertion that epsilon(G)/epsilon(0) < epsilon. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1144 / 1146
页数:3
相关论文
共 50 条
  • [1] A Note on Regular Ramsey Graphs
    Alon, Noga
    Ben-Shimon, Sonny
    Krivelevich, Michael
    JOURNAL OF GRAPH THEORY, 2010, 64 (03) : 244 - 249
  • [2] A NOTE ON ALMOST REGULAR GRAPHS
    HOFMEISTER, M
    MATHEMATISCHE NACHRICHTEN, 1994, 166 : 259 - 262
  • [3] A Note on Connectivity of Regular Graphs
    Xu, Huixian
    Zhou, Jinqiu
    JOURNAL OF INTERCONNECTION NETWORKS, 2023, 23 (04)
  • [4] A NOTE ON STRONGLY REGULAR GRAPHS AND (k, τ)- REGULAR SETS
    Carvalho, Paula
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2012, 25 : 3 - 8
  • [5] On the energy of regular graphs
    Gutman, Ivan
    Firoozabadi, Sanaz Zare
    de la Pena, Jose Antonio
    Rada, Juan
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2007, 57 (02) : 435 - 442
  • [6] A Note on Directed Strongly Regular Graphs
    Jerod Michel
    Graphs and Combinatorics, 2017, 33 : 171 - 179
  • [7] Note on Parity Factors of Regular Graphs
    Lu, Hongliang
    Lin, Yuqing
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2013, 1 (01) : 50 - 55
  • [8] A NOTE ON DISTANCE-REGULAR GRAPHS
    FISHER, PH
    ARS COMBINATORIA, 1988, 26A : 91 - 92
  • [9] A note on quotients of strongly regular graphs
    Giudici, Michael
    Smith, Murray R.
    ARS MATHEMATICA CONTEMPORANEA, 2010, 3 (02) : 147 - 150
  • [10] A NOTE ON REGULAR SETS IN CAYLEY GRAPHS
    Zhang, Junyang
    Zhu, Yanhong
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024, 109 (01) : 1 - 5