Controllability of 2-D nonlinear systems

被引:4
|
作者
Klamka, J [1 ]
机构
[1] Tech Univ, Inst Automat, PL-44100 Gliwice, Poland
关键词
nonlinear discrete systems; 2-D systems; controllability; nonlinear covering operators;
D O I
10.1016/S0362-546X(97)00465-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:2963 / 2968
页数:6
相关论文
共 50 条
  • [1] CONTROLLABILITY OF 2-D SYSTEMS
    ROCHA, P
    WILLEMS, JC
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1991, 36 (04) : 413 - 423
  • [2] Controllability of 2-D systems
    Klamka, J
    Fourth International Workshop on Multidimensional Systems - NDS 2005, 2005, : 199 - 206
  • [3] Controllability of linear 2-D systems
    Klamka, J
    ICES 2002: 9TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS, VOLS I-111, CONFERENCE PROCEEDINGS, 2002, : 935 - 938
  • [4] CONTROLLABILITY AND RECONSTRUCTIBILITY CONDITIONS FOR 2-D SYSTEMS
    SEBEK, M
    BISIACCO, M
    FORNASINI, E
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1988, 33 (05) : 496 - 499
  • [5] The Graded Hautus Test of Controllability for 2-D Systems
    Pal, Debasattam
    Zerz, Eva
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 490 - 495
  • [6] Controllability and minimum energy control of 2-D linear systems
    Klamka, J
    PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1997, : 3141 - 3142
  • [7] CONTROLLABILITY OF THE 2-D ROESSER MODEL
    KUREK, JE
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 1990, 1 (04) : 381 - 387
  • [8] Stability, controllability and observability of 2-D continuous-discrete systems
    Xiao, Y
    PROCEEDINGS OF THE 2003 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL IV: DIGITAL SIGNAL PROCESSING-COMPUTER AIDED NETWORK DESIGN-ADVANCED TECHNOLOGY, 2003, : 468 - 471
  • [9] Controllability and reachability of 2-D positive systems: A graph theoretic approach
    Fornasini, E
    Valcher, ME
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2005, 52 (03) : 576 - 585
  • [10] Stability and controllability of a class of 2-D linear systems with dynamic boundary conditions
    Rogers, E
    Galkowski, K
    Gramacki, A
    Gramacki, J
    Owens, DH
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2002, 49 (02): : 181 - 195